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A B S T R A C T

Urban energy planning and design are inherently challenged by a lack of granular input data, resulting in 
epistemic uncertainties. This study focuses on methodologies to quantify and propagate these uncertainties to 
support decision-making in urban energy planning. Specifically, we examine the use of clustering techniques, 
commonly applied to model districts with limited building archetypes. We demonstrate and measure un
certainties that archetype modeling introduces in the outcomes. To this aim, we developed a novel methodology 
grounded in Dempster-Shafer theory (DST) of evidence and demonstrate it using a case study district in Belgium. 
Using the EnergyVille Building Energy Calculation System (EBECS) and a metaheuristic optimization algorithm, 
we evaluate two collective decarbonization scenarios targeting 60 % and 80 % reductions in operational carbon 
emissions for residential buildings across the district. We propose methods to derive sub-archetypes, and their 
probability mass functions within each archetype. Then, belief and plausibility functions are calculated to predict 
distribution functions of outcomes, while saving a significant number of required simulations in comparison to 
existing methods such as Monte Carlo simulations that are prohibitive at an urban scale. Our results reveal that 
the 60 % reduction scenario, while appearing cost-effective under deterministic assumptions, carries high un
certainty, potentially leading to higher carbon abatement costs than predicted. In contrast, the 80 % scenario is 
more robust under low-uncertainty conditions. This research demonstrates the critical role of uncertainty 
quantification as a key performance indicator in urban energy planning, supporting decision-makers in miti
gating financial and environmental risks.

1. Introduction

Urban energy demand continues to rise and will increase substan
tially due to rapid urbanization, with over two-thirds of the global 
population expected to reside in urban areas by 2050 (IEA, 2024). Cities 
need to become more energy-efficient, sustainable, and resilient to 
climate change to cope with this rapid urbanization. This often involves 
retrofitting existing buildings (BPIE - Buildings Performance Institute 
Europe, 2021), (IEA, 2022) to enhance energy performance, integrating 
local renewable energy sources to maximize self-sufficiency, and 

reducing operational carbon emissions (Esfandi et al., 2024;IEA, 2024; 
IEA, 2021). Finding solutions to reduce carbon emissions while also 
minimizing expenses is a complex, multidimensional process (Araújo, 
Gomes, Ferrão & Gomes, Dec., 2024). Planning without considering 
uncertainties can lead to over- or under-investment, potentially jeop
ardizing the cost-effectiveness of proposed strategies. Moreover, un
certainty quantification ensures that resources are allocated to measures 
with the highest likelihood of achieving desired outcomes to support 
successful policymaking (Asadi, Chenari, Gaspar & Gameiro da Silva, 
May, 2023). In this process, urban building energy modeling (UBEM) is a 
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tool that supports urban planners for informed decision-making and 
optimal urban energy planning. UBEM outcomes are subject to two 
distinct types of uncertainties: epistemic and aleatoric. Epistemic un
certainties arise from incomplete knowledge, input data limitations, or 
model simplifications, which are reducible with more information. 
Aleatoric uncertainties, on the other hand, stem from inherent 
randomness and variability in weather conditions, energy prices, and 
occupant behavior, making them irreducible. Fig. 1 illustrates the rela
tion between total uncertainties and its epistemic and aleatoric nature. 
Epistemic uncertainties can be decreased to a certain level by more data 
gathering. Aleatoric uncertainties can be only reported to help 
decision-makers to search for risk mitigation options. This paper focuses 
on developing a method to quantify epistemic uncertainties resulting 
from simplifications and lack of quality data that are inevitable in 
large-scale analyses in urban building energy modeling and simulations. 
The application of the proposed method is demonstrated for residential 
building stock in a Belgian district due to the availability of detailed EPC 
data, relevance to policy frameworks.

The paper is structured as follows. Section 1 reviews the existing 
literature on UBEM, highlighting current methodologies, key limita
tions, sources of uncertainties, and methods for uncertainty quantifica
tion and the need for this study. Section 2 elaborates on the methodology 
used in this study, including data collection, clustering buildings to 
derive archetypes, building retrofit strategy development, and the 
developed uncertainty propagation method based on Dempster–Shafer 
theory (DST) of evidence. Section 3 provides information about the case 
study used in the article. Section 4 presents the results of the case study, 
discussing how input data quality, retrofit strategies, and investment 
cost uncertainties can influence expected operational carbon emissions 
from buildings and cost-effectiveness of building retrofits. Section 5
presents discussions about implications of the findings, limitations of 
this study, and recommendations for future research. Finally, Section 6
provides conclusions, emphasizing the need for scalable and flexible 
UBEM models that incorporate uncertainty quantification to guide 
policy- and decision-making.

1.1. Urban building energy modelling: existing tools and practices

UBEM serves as a critical tool for managing the complexity of 

modern urban energy systems, particularly in the pursuit of sustainable, 
resilient, and energy-efficient cities (Deng, Javanroodi, Nik & Chen, 
Sep., 2023). By simulating the energy performance of buildings at the 
city or district scale, UBEM empowers planners to evaluate the intricate 
trade-offs between energy efficiency, costs, carbon emissions, and social 
equity. UBEM facilitates informed decision-making on retrofitting 
measures, renewable energy generation strategies, and policy in
terventions, all while considering economic and social implications.

UBEM methodologies generally adopt either bottom-up or top-down 
modeling approaches. Top-down models treat the entire building sector 
as a single or very limited number of elements to estimate energy con
sumption on a large scale in national level. In contrast, bottom-up 
modeling approaches analyze individual buildings and their end-uses, 
estimating energy consumption at the level of single buildings or 
groups of buildings (Ali et al., Sep., 2021). Bottom-up modelling re
quires detailed physical attributes such as construction materials, ge
ometry, and heating and cooling and air conditioning (HVAC) systems 
(Kamel, Nov., 2022). Conversely, top-down models leverage statistical 
or econometric methods to estimate energy consumption using aggre
gated data, including historical energy use, socio-economic factors, and 
urban density (Wong et al., Nov., 2021), more applicable on national 
level energy modeling.

Bottom-up models are developed using building energy simulation 
engines like EnergyPlus (EnergyPlusTM, 2017), accompanied by pro
grams such as CityBES (Chen et, al.), and URBANopt (El Kontar et al., 
2020) hosting integrated tools for post-processing and optimization 
tasks to derive optimal design on urban scale. Also, building models in 
the bottom-up approach can be developed with in-house developed tools 
tailored for available input data.

To further streamline complex urban models, similar buildings are 
grouped into representative archetypes, reducing computational de
mands while maintaining reasonable accuracy (Dahlström, Johari, 
Broström & Widén, Jan., 2024). These building archetypes are often 
derived using clustering techniques complemented with expert analysis 
for fine-tuning and sanity check (Guo, Bachmann, Kersten & Kriegel, 
2023), (Prina et al., 2024). A common approach is to use Energy Per
formance Certificates (EPC) of buildings as the basis and use data 
analysis to provide essential inputs for energy simulations in UBEM. For 
instance, Johari et al. developed a UBEM using geo-referenced EPC data 
for two Swedish cities, Borlänge and Uppsala (Johari, Shadram & 
Widén, Sep., 2023). A common application of UBEM is to explain energy 
retrofit measures for decarbonation of building stock (e.g., (Ferrari & 
Beccali, 2017), and (Li & Feng, 2025))

1.2. Input data for UBEM

Input data for UBEM encompasses a wide range of detailed infor
mation to ensure accurate energy simulations at the building and district 
levels. Although there has been a wide range of data enhancement 
methods for building energy simulations (Sharifi et al., 2023), there is 
still difficulty in acquiring minimum data for UBEM. Minimum UBEM 
inputs include building characteristics (geometry, materials, insulation), 
HVAC and lighting specifications, climate and weather data, and occu
pancy patterns. UBEM integrates data-driven techniques and probabi
listic modelling to overcome three main limitations being General Data 
Protection Regulation (GDPR), input data, and computational power 
(Wang et al., Jun., 2022).

Piro et al. (Piro, Ballarini and, Corrado) focused on the input data 
limitations, requirements, and modeling assumptions necessary for 
UBEM. They highlight how UBEM introduces simplifications, such as 
aggregated building geometry, which reduces computational costs but 
also lead to uncertainties in energy performance predictions. De Jaeger 
et al. (De Jaeger, Lago & Saelens, 2021) showed the importance of 
advanced sampling methods in input data generation and proposed a 
probabilistic building characterization approach for archetype buildings 
to quantify uncertainty in district heat demand arising from modeling 

Fig. 1. Conceptual relation between total uncertainty with epistemic and 
aleatoric uncertainties. Blue dashed line shows minimum epistemic uncertainty 
that must be quantified.
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simplifications. Using quantile regression and copula methods, the study 
focused on the interdependencies between key building parameters like 
U-values and window-to-wall ratios. The findings underscore the 
application of advanced data analysis techniques in UBEM to overcome 
barriers in input data acquisition. Ferrando et al. (Ferrando et al., 2022) 
developed building archetypes according to occupant behavior sched
ules in order to provide results close to operational conditions. Bass et al. 
(Bass et al., 2022) compared UBEM simulation results to measured en
ergy data across a large building stock to highlight biases introduced by 
using coarse building metadata (archetypes). They conclude that current 
methods can predict energy demand accurately on the district level. 
However, on the individual building level, outcomes are subject to sig
nificant errors. The authors demonstrated the need for better data res
olution and aggregation methods to improve UBEM accuracy in the 
individual building level. This problem is pronounced strongly when 
renovation measures are desired as the main outcomes. Renovation 
measures heavily depend on current individual building conditions.

1.3. Uncertainty analysis and UBEM

Lack of input data and its consequent data enhancement methods for 
input data and simplifications of models lead to uncertainties in the 
outcomes (Ferrando, Causone, Hong & Chen, 2020). Several methods 
exist for quantifying uncertainties in UBEM outcomes, including Monte 
Carlo simulations (MCS), Bayesian approaches, stochastic modelling, 
scenario development, and DST ( (Guo, Haris, Sharifi & Saelens, Jan., 
2025; Oraiopoulos & Howard, Apr., 2022; Shamsi, Ali, Mangina & 
O’Donnell, Oct., 2020; eonsook Tian et al., 2018; Yan, Tang & Li, 
2024)). Kong et al. (Kong et al., Aug., 2023) conducted a systematic 
review of UBEM challenges and opportunities, focusing on the methods, 
tools, and workflows that are currently adopted. The paper identifies 
significant gaps in input data collection, model calibration, and simu
lation methods, highlighting the complexity of urban energy systems 
and the need for more integrated and scalable UBEM approaches. On the 
other hand, it has been explored how lack of accurate input data can 
impact the outcomes of UBEM (Geske, Engels, Benz & Voelker, Sep., 
2023). However, current models often fail to address uncertainty 
comprehensively, particularly in output interpretation (Kong et al., 
Aug., 2023). A conventional method only shows the range of possible 
outcomes without identifying their likelihood and significance to guide 
the decision-makers in interpretation.

One of the most common probabilistic approaches in UBEM is MCS 
[33], where multiple simulations are run using random input values 
drawn from probability distributions ((Lin et al., 2023; Ohlsson & 
Olofsson, May, 2021)). These distributions represent uncertainties in 
parameters such as insulation levels or HVAC efficiency. By running 
thousands of iterations, Monte Carlo methods generate a distribution of 
possible outcomes, providing insights into the likelihood of different 
energy performance scenarios. Prataviera et al. (Prataviera, Vivian, 
Lombardo & Zarrella, Apr., 2022) evaluated the impact of input un
certainty on UBEM by applying forward uncertainty analysis (UA) and 
sensitivity analysis (SA) to a case study in Milan. Using MCS, the study 
focused on input parameters like building geometry, envelope proper
ties, and occupancy behavior, which are typically uncertain in 
large-scale urban models. Notably, the previously observed 80 % over
estimation in peak heating demand is reduced to 25 % when stochastic 
variation is included, illustrating the importance of probabilistic UBEM 
approaches. Zhan et al. (Zhan, Sezer, Hassan & Wang, Sep., 2023) 
conducted a comparative analysis of uncertainty characterization 
methods in UBEM applied to a case study in Qatar. The authors 
compared a deterministic approach with two probabilistic approaches 
using different Probability Distribution Functions (PDFs) to propagate 
uncertainties of input parameters to outputs.

Wang et al. (in Wang et al., 2025) adopted scenario development 
method and incorporated measurement data to calibrate their building 
thermal models to achieve high accuracy of energy simulations. Yan 

et al. (Yan, Tang & Li, 2024) argue that the availability of data for 
calibration models is always a barrier. Hence, they proposed scenario 
development method for quantifying uncertainties. On the other hand, 
limitation of the number of scenarios provides a limited and coarse 
uncertainty quantification which makes their approach case specific, 
such as when considering finite future climate scenarios as exercise in 
Liu et al. (2023). Wang et al. (i Wang et al., 2025) adopted a compu
tationally expensive method that combines statistical models (MCS) and 
distributions of inputs to provide a refined distribution of outcomes 
under multiple scenarios. Their method, however, was applied to one 
office building to find optimal renovation strategy under uncertainty.

Thrampoulidis et al. (Thrampoulidis, Hug & Orehounig, 2023) 
explain why there is a need for a method to derive near-optimal building 
energy retrofit measures. They explain the necessity of bottom-up 
models to derive actionable outcomes. They address the computa
tional challenges of city-scale retrofit optimization by developing scal
able surrogate modeling. The authors demonstrated their surrogate 
UBEM using a case study district with over 1400 buildings. However, the 
task of developing surrogate models was not simply replicable and the 
method remains case specific.

Li et al. (Li, Zamanipour & Keppo, 2024) developed a multi-output 
machine learning model for building energy prediction across 
different time scales (daily, monthly, and annual), using Bayesian 
adaptive spline surfaces and deep neural networks. The study demon
strates that multi-output models can capture energy use correlations at 
multiple scales, significantly improving accuracy and reducing un
certainties and computational costs compared to single-output models. 
The authors applied Latin Hypercube Sampling for input parameter 
variability and tested the models on an office building in Tianjin, China 
addressing energy prediction accuracy and scale accumulation. Hwang 
et al. (Hwang, Lim & Lim, 2024) adopted Bayesian methods to enhance 
the prediction of building energy demand by applying corrections to 
building geometry data. Their approach focused on improving the 
quality of geometrical inputs, which in turn led to more accurate energy 
simulations and calculations. However, their Bayesian framework 
exhibited limitations in distinguishing between buildings that have 
similar energy consumption but differ in structural or physical charac
teristics. This limitation is particularly critical in the context of building 
retrofit planning, where both energy performance and detailed building 
features must be considered. Dempster–Shafer Theory (DST) is a subset 
of Bayesian methods and has gained attention as a tool for epistemic 
uncertainty quantification in building energy modeling. Unlike Bayesian 
methods that require precise prior probability distributions (ieter Tian 
et al., 2018), DST works with belief functions to provide lower and upper 
probability bounds (Deng & entropy, 2016) (belief and plausibility) for 
outcomes. This allows integration of ambiguous or sparse information 
from multiple sources, making DST a promising alternative or comple
ment to Bayesian approaches for modeling uncertainty (Deng & Wang, 
2021). Xuanyuan et al. (Xuanyuan, Yao, Knefaty & Laurice, May, 2024) 
investigate the application of DST for sensitivity analysis in evaluating 
the impact of occupant behavior on building energy performance. The 
authors combine this approach with machine learning techniques to 
accelerate data processing and enhance model accuracy. The findings 
suggest that this hybrid method improves both the reliability of energy 
evaluations and the cost-effectiveness of building operations by select
ing optimal model parameters through global sensitivity analysis. While 
the study focuses on occupant behavior, it does not explore the broader 
application of this method to retrofit measures or investment cost 
uncertainties.

1.4. Gaps and motivation

Overall, probabilistic modelling enhances UBEM’s ability to upscale 
and cope with lack of quality input data. These diverse methods and 
tools allow UBEM to tackle complex urban energy systems, providing 
planners with actionable insights for sustainable urban development. 
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However, existing methods are either specifically designed for their 
applications, or they provide general methods that rely on extensive 
computational power to repeat simulations with a wide range of input 
data to propagate uncertainty of outcomes. Climate change impact, 
occupant behavior, and energy prices are among parameters that 
contribute to aleatoric uncertainties that have been mostly studied in 
existing literature.

A major gap in current UBEM approaches is the systemic treatment 
for propagating epistemic uncertainties. UBEM relies on simplified as
sumptions, such as clustering techniques, causing inaccuracies and 
oversights. However, the outcomes are conventionally presented with 
deterministic Key Performance Indicators (KPIs). This can be due to 
limitations of building-related input data or high computational costs of 
uncertainty analysis. Even when uncertainties are reported, they are 
typically given as just a range of outcomes, with little indication of 
uncertainty itself as a KPI.. Uncertainty KPI provides the basis for risk 
management, which is an essential part of investment planning. If un
certainties are not comprehensible, risks can be overestimated leading to 
rejection of feasible plans. On the other hand, if risks are not predicted 
and mitigated, failure of one proposed plan can hinder future urban 
energy planning efforts. We develop and demonstrate a method that can 
incorporate uncertainty analysis in the planning so that energy planners 
can weigh it against costs and carbon emissions.

2. Materials and methods

It was previously discussed that UBEM inevitably deploys data- 
driven techniques to simulate the energy performance of building 
stock while respecting limitations in GDPR, input data, and computation 
power. Data-driven techniques for UBEM rely on adoption of the most 
representative buildings, named archetypes or building clusters, in the 
district to report the results with minimum error in a deterministic 
approach. Archetypes are the most probable scenarios of all possible 
scenarios for a group of buildings of which the precise and granular 
input data are not available. While uncertainty propagation in this study 
attempts at reporting a probability distribution of outcomes, enabling a 
decision-maker to screen optimistic and pessimistic scenarios for an 
evidence-based decision-making. Current uncertainty propagation in 
UBEM is typically presented only through the outcomes of different 
input sets, rather than being explicitly quantified and used as a KPI in 
decision-making. Besides, generating probability distribution has been 
practiced using MCS which is computationally expensive and inhibitive 
on the urban scale.

In this study, we address these gaps by developing a framework that 
integrates uncertainty quantification using DST, allowing for explicit 
reporting of uncertainties in investment costs for retrofit scenarios, and 
operational carbon emissions from households in the district as two 
chosen design parameters for upgrading energy performance of the case 
study district. We first apply exploratory data analysis and then employ 
a clustering approach to group buildings by archetypes. Uncertainty 
measures and energy related outcomes are derived in next steps. We run 
building energy simulations to explore the impact of retrofit strategies 
under different obligatory CO2 reduction scenarios for the district. The 
process workflow is illustrated in Fig. 2 and elaborated below.

2.1. Input data analysis

The methodology for this study begins with the collection and pro
cessing of input data required for UBEM. The input data generally 
consists of building geometries, materials, HVAC system specifications, 
historical energy consumption, and local environmental factors such as 
weather conditions and solar radiation. Buildings are classified into 
multivariate clusters based on key parameters such as construction type, 
physical and geometrical parameters, and heating systems (Li, Zama
nipour & Keppo, 2024).

In this study building physical attributes for the case study district 

were provided by the Flemish Institute for Technological Research 
(VITO) using anonymized Energy Performance Certificate (EPC) data 
from the Flemish Energy and Climate Agency (VEKA). The data includes 
distributions of construction year, conductivity of windows, externals 
walls, roofs, and floors according to the EPC database. Moreover, 
geometrical attributes such as building floor area, window to wall ratio 
(WWR), building heights, and building volumes were provided by the 
VITO dataset aggregated from different sources. An excerpt of the dis
tribution of input data is visualized in the results section within 
exploratory data analysis and clustering outcomes.

2.2. Building archetypes

In this study, building physical parameters that are involved in un
certainty analysis are specific thermal conductivity of external walls, 
windows, roof, floor that are required for the energy simulation engine. 
Geometrical parameters are WWR, total conditioned floor area, and 
height. The heating system in UBEM is modeled using efficiency of the 
production unit and fuel type being diesel, natural gas, electricity. Note 
that we did not include heating system efficiency and type in the un
certainty analysis. Heating systems of the given cases are given as 
deterministic input parameters. Efficiency of emission system is directly 
applied to heating system for simplification of data analysis. These eight 
parameters were chosen for the analysis considering available input data 
and the importance of parameters in the UBEM outcomes (De Jaeger, 
Reynders, Callebaut & Saelens, 2020; Ghiassi & Mahdavi, 2017; Men
berg, Heo & Choudhary, 2016).

Clustering techniques are common tools to be adopted for deriving 
representative archetypes where each cluster explains an archetype (De 
Jaeger, Reynders, Callebaut & Saelens, 2020), (Prina et al., 2024). We 
use k-means clustering technique which is computationally fast and 
outperforms other techniques in this application according to the 

Fig. 2. Process workflow deployed using the devised uncertainty quantification 
methodology.
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previous studies such as in (Aggarwal); Goy, Coors and Finn (2021); 
Dahlström, Johari, Broström and Widén (2024). Results of k-means are 
also impacted by the scale of the input data and hence the data must be 
standardized at the first step. The k-means technique uses Euclidean 
distance (Dahlström, Johari, Broström & Widén, Jan., 2024), 
(Aggarwal) between data points and center of clusters and aims to find 
the minimum sum of all distances according to Eq. (1). 

Dist = min
c∈C

∑k

i=1

∑

x∈X
(x − Ci)

2 (1) 

Where Dist is the performance parameter related to Euclidean dis
tance in a multi-dimension domain and C is the center of clusters and the 
optimization variable. x represents a data point within the set X, which is 
the set of all possible datapoints, and k is the number of clusters. 
Defining the number of clusters is not straightforward as explored by 
Dahlström et al. (Dahlström, Johari, Broström & Widén, 2024). A 
common approach for determining the optimal number of clusters is 
named elbow method. It identifies the point where increasing the 
number of clusters no longer results in a significant decrease in the error 
metric. In this method, the number of clusters is increased, and the error 
criteria is reported and monitored iteratively. The iteration stops when 
the error is not significantly decreasing. However, the error criteria also 
have been extensively criticized and elaborated (Halkidi, Batistakis & 
Vazirgiannis, 2001). In this study we used root-mean-square standard 
deviation (RMSSTD) as proposed by Dahlström et al. (Dahlström, Johari, 
Broström & Widén, 2024) and calculated using Eq. (2). 

RMSSTD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n − v

∑n

i=1

∑k

j=1

(
xij − xj

)2

√
√
√
√ (2) 

Where n is the number of data points, v is the number of variables, xij 

is the value of the i th data point for the j-th variable, xj is the mean of the 
j-th variable within cluster.

2.3. Building energy efficiency measures

The building archetypes feed inputs into our energy simulation en
gine, EnergyVille Building Energy Calculation System (EBECS) 
(energyville.be/en/product/ebecs-tool), which generates a 
physics-based monthly steady state energy balance model of the given 
building. EBECS is a white-box model following Belgian EPC logic for 
energy demand of residential buildings. It uses a simplified model of 
heating system accounting for a combined efficiency of production and 
emission units. EBECS incorporates detailed renovation datasets to 
simulate energy efficiency measures. These retrofitting measures 
include improvements in wall and roof and floor insulation, window 
replacements, HVAC system upgrades, and the integration of renewable 
energy technologies such as solar photovoltaic panels. Appendix D 
provides a list of individual building retrofit measures and their speci
fications. Each archetype’s energy performance is simulated both before 
and after multiple retrofitting to evaluate the potential energy savings, 
carbon emissions reductions, and associated costs. Retrofit sets are 
derived from permutation of different individual measures applied to 
individual building elements, making different combinations of retrofit 
measures. The choice of energy simulation engine does not form an 
essential part of this study. The methodology can be replicated with any 
established building energy and renovation simulation engine.

2.4. Uncertainty propagation

In a deterministic approach, the district is represented by the ar
chetypes derived in the previous section using combined clusters of 
parameters. However, each cluster takes the parameter values of focal 
points, while the real values for buildings are distributed. In the devel
oped methodology, we propose using a higher and a lower value limit 

for parameter values of each cluster. The lower and higher values form 
sub-clusters and accordingly form sub-archetypes. The set of all com
binations of sub-archetypes for a given archetype defines a probabilistic 
space characterized by assigned probabilities. Thus, a deterministic 
archetype is transformed into a probabilistic representation composed of 
its sub-archetypes.

In the next step at the district level, various combinations of sub- 
archetypes form a probabilistic space that encompasses all possible 
configurations representing the district. In other words, each probabi
listic event corresponds to a specific set of sub-archetypes that together 
explain the district. In a deterministic approach, the single set of ar
chetypes with the highest likelihood is used to represent the district. In 
the proposed method, however, the district is represented by combina
tions of sub-archetypes, each associated with a given probability. This 
set of sub-archetypes is then used for energy and retrofit simulations, 
with the results reported through belief and plausibility distribution 
functions, as defined by DST explained below.

The DST of evidence, also known as the Theory of Belief Functions or 
Evidence Theory, is a mathematical framework for reasoning with un
certainty. It generalizes the Bayesian theory of probability and in
troduces belief and plausibility functions to derive distributions of 
outcomes without the need for precise input probability distributions 
(ieter Tian et al., 2018). Moreover, DST provides a means for quantifying 
epistemic uncertainties by representing what we know about the system 
through a belief function and weighing it against what we do not know, 
captured by the plausibility function.

In a deterministic analysis, the district is explained with the original 
archetypes without a probability distribution. The summation of energy 
demand for all the archetypes multiplied by the number of buildings in 
each archetype will show the aggregated energy demand for the district.

In the proposed method, the district is represented with set Θ={D1, 
…,Dn} with a probability m(Dn) for each event Dn. Dn in our study is 
formed with a combination of sub-archetypes, Dn={An,1,..An,m}, so that 
each main archetype with identifier 1 to m must be represented by one 
and only one of its sub-archetypes in each event Dn. Similar to con
ventional archetype modeling, each sub-archetype represents a cluster 
of buildings. The total number of buildings in the district is presented by 
the summation of buildings in each cluster, and accordingly, related 
outcomes f(Dn), such as energy demand, carbon emissions, and costs are 
multiplied by the number of buildings in each sub-archetype and 
aggregated as shown in Eq. (3). 

f(Dn) =
∑

i=1:m
f(An, i) ∗ Ni (3) 

Where, m is number of original archetypes and their identifier, 
whereas n is the identifier of event Dn. Ni is the number of buildings in 
sub-archetype i. DST investigates all possible combinations of events in 
Θ in a set named power set (2Θ). As such, DST makes sure that any in
formation that is available to support any event from Θ will be counted 
in the analysis (present in the power set) and hence absence of knowl
edge about the system is reflected. Summation of probabilities of all 
possible events in the power set 2Θ equals to 1 as shown in Eq. (4) ac
cording to DST. 
∑

D⊆2Θ

m(Dn) = 1, s.t. m(∅) = 0 (4) 

To calculate probability of each event Dn, m(Dn), probability of its 
sub-archetypes must be calculated first. Each sub-archetype has an 
associated probability mass function named Basic Probability Assign
ment (BPA) (Fei, Xia, Feng, & Liu, 2019). BPA of sub-archetypes is 
function of BPA of its parameter’s values. Simply put, sub-archetypes 
with more probable parameter values will themselves be more prob
able. We propose using PDF to derive probability mass functions for BPA 
for each parameter according to the available distribution of input data 
(Xu, Deng, Su, & Mahadevan, 2013). This allows automating and 
upscaling the process, hence realization of the method in the application 
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of UBEM. Additionally, our method enables the adoption of low-quality 
and limited-quantity data as a practical approach to advancing UBEM.

To derive BPAs for all parameters, we fit a kernel density function to 
each parameter distribution for each archetype. Then, the data range is 
discretized, and the data are clustered. If only one cluster is used, the 
BPA will be equal to 1, corresponding to the focal point of the cluster, 
resulting in a deterministic view of that parameter. We use two clusters 
for each parameter, providing two focal points representing the upper 
and lower limits of the range for that parameter. The cumulative prob
ability of the cluster within the parameter is assigned to the focal point 
of the cluster hence BPA is derived for that parameter value (Fig. 3, left). 
The procedure is repeated for all parameters involved in the analysis and 
for each archetype. Choosing the number of clusters for each parameter, 
as seen in Fig. 3 (right side), gives control over the final number of sub- 
archetypes. Higher number of clusters will exponentially increase the 
number of sub-archetypes and hence number of simulations while 
providing a more refined distribution of final outcomes.

BPA mass functions of different parameters with lower and higher 
values within an archetype are then combined to generate the sub- 
archetypes. Combined BPAs are derived by multiplication of BPAs of 
individual parameters and then standardized because they are assumed 
independent events following rules for joint probability. Similarly, BPA 
of combination of sub-archetypes Dn is calculated using multiplication of 
individual BPA of sub-archetypes in each Dn. Hence, each Dn will be 
assigned a BPA named m(Dn) representing probability mass function of 
Dn. This mass function is also assigned to the outcomes related to that Dn 
previously shown as f(Dn).

Finally, DST measures named belief and plausibility functions are 
used to propagate uncertainty. Bel(A) and Pl(A) are calculated using 
equations Eq. (5) and Eq. (6). 

Bel(Dn) =
∑

Dn⊆D
m(Dn) (5) 

Bel(Dn) can be interpreted as a measure for the amount of informa
tion in Dn that intersects with other events in total D. Bel(Dn) shows how 
much scenario Dn that explains total district D is supported by evidence 
and available input data according to A1 to Am as sub-archetypes. 

Pl(Dn) = 1 − Bel(Dn) (6) 

Pl(Dn) represents the absence of information to support Dn since Dn 
represents discriminated sets of Dn. Each Dn contains required input data 
for energy simulations and retrofit analysis in addition to BPAs, belief, 

and plausibility functions. Belief and plausibility functions can be re
ported in cumulative format, named cumulative belief function (CBF) 
and cumulative plausibility functions (CPF), to provide a decisive 
measure. CBF means all the evidence that support set Dn and associated 
energy demand and costs. Similarly, CPF means all the evidence that 
support Dn and associated calculated outcomes. Uncertainty is under
stood as the gap between these belief and plausibility of set Dn (Fig. 4). 
Algorithm 1 instructs a high-level stepwise flow required for calculation 
of DST measures for the entire district.

To capture epistemic uncertainties, sub-archetypes were generated 
by discretizing the parameter ranges of each original archetype. Spe
cifically, for each of the seven key parameters (e.g., wall U-value, win
dow U-value, floor area, etc.), two representative values were selected 
— a lower bound and an upper bound — based on the distribution of 
available data. This resulted in 27=128 possible combinations per 
archetype, representing all permutations of lower and upper bounds 
across the eight parameters. Each combination defines a unique sub- 
archetype with a specific set of parameter values.

All possible combinations were generated without imposing hard 
constraints, to fully explore the uncertainty space. However, sub- 
archetypes with physically unlikely combinations naturally receive 
lower BPAs based on their lower likelihood in the empirical data dis
tributions. This process ensures that the DST framework properly re
flects the confidence associated with each sub-archetype while avoiding 
manual bias.

2.5. Optimal design: collective and individual building retrofit scenarios

To assess the optimal retrofitting strategies, we enforce energy effi
ciency measures in two steps: collective retrofitting scenarios for the 
entire district to achieve district level targets in addition to individual 
building level minimum energy efficiency requirements. The optimal 
renovation package can be found considering different objective func
tions. CO2 emissions, investment costs, and total cost of ownership are 
among the most common KPIs to include in the objective function. 
However, this study aims for a simplified objective function to allow for 
a better interpretation of the outcomes. Moreover, aleatoric un
certainties such as weather conditions, energy prices, and occupant 
behaviors are not included in the analysis. Thus, we prioritize invest
ment cost over other financial variables such as operational costs and 
total cost of ownership to avoid facing uncertainties due to energy price 
fluctuations, taxes, or subsidies, and to isolate the impact of epistemic 

Fig. 3. Comparison between BPAs for two (left) and eight (right) clusters using proposed method. BPA is calculated for focal points using their probability density.
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uncertainty on retrofit strategies. The optimization problem is mathe
matically formulated as below. 

min
r

o =
∑n

i
Ir
i (7) 

subject to: 

∑n

i
cr

i < obj.
∑n

i
cc

i (8) 

EPCr
i < 100 (9) 

∀r ∈ Rsetandi ∈ [1 : m]

The objective function o in Eq. (7) is summation of the investment 
costs (I) to be minimized on the district level for renovation packages r as 
optimization parameter. r is a renovation package from the total reno
vation options Rset for each building i from all m building archetypes. 
One optimization constraint is shown in Eq. (8), representing summa
tion of Cr

i as carbon emissions from building i under renovation package 
r. This serves the district level carbon reduction objective applied by the 
scalar parameter obj defining the percentage to which the emissions are 
required to decrease in comparison to summation of Cc

i as carbon emis
sion from building i in current situation. Eq. (9) shows another 
constraint which is EPC requirements for individual building level.

In the individual building level, we find renovation packages that 
upgrade each building archetype to meet a minimum EPC of 100 kWh/ 
m2. Such a minimum can be achieved by a variety of renovation pack
ages. To this aim, we model and simulate all possible combinations for 
renovation measures for each archetype and then filter the outcomes 
that upgrade each individual building to an EPC lower than 100 kWh/ 
m2/year. In a second step, we enforce a CO2 emission reduction target 
for the entire district. Among all filtered renovation packages for each 
archetype, the ones that minimize investment costs and minimize car
bon emissions are chosen. The optimization algorithm is designed as 
below.

At the first step, we find pareto front of renovation packages for each 
archetype. By that, we decrease the number of options that must be 
explored by the optimization algorithm. Pareto fronts for each building 
renovation scenarios will decrease the number of options and help to 
reach optimal solution in brute force method faster (Sharifi et al., 2022). 
In the next step, we used an evolutionary algorithm to find the combi
nation of renovation for all the archetypes in the district that can 
minimize the investment cost and respect carbon reduction in the dis
trict level. We developed a brute-force method combined with genetic 

algorithms to provide educated guesses in each iteration. DEAP library 
(Fortin et al., July 2012) from python programing language was used to 
formulate the optimization problem and solve it efficiently. As evolu
tionary algorithms do not guarantee finding the optimal solution, the 
process of finding the solutions for the district was repeated, and optimal 
solutions were compared to reach a convergence among solutions pro
vided by the algorithm. Algorithm 2 summarizes the steps for the pro
posed optimization algorithm in high level.

3. Case study: Sint-niklaas

Fig. 5 shows a map of part of Sint-Niklaas city used in the analysis as 
case study with 1410 residential buildings, where each building is 
classified into different clusters, denoted by a variety of color codes. 
These clusters represent archetypes based on building characteristics 
such as geometry and insulation properties. Note that the cluster colors 
are only illustrative as we did not need to assign cluster labels to each 
individual real building for this study. The dataset includes only resi
dential buildings in the Sint-Niklaas district. Non-residential typologies 
(e.g., commercial, office) are outside the scope of this study and repre
sent an important avenue for future research.

Fig. 6 presents a pair-plot of various building parameters used for 
archetype modeling in this study. We used window to wall ratio WWR, 
wall, windows, floor, and roof u-values in addition to building condi
tioned floor area and height. The data is divided into three building 
types: detached buildings (green), semi-detached buildings (orange), 
and terraced buildings (blue). WWR shows a relatively consistent dis
tribution across building types, with most values ranging from 0.1 to 0.3. 
Detached buildings exhibit a slightly wider distribution, indicating a 
higher variability in window coverage. Wall U-value, which measures 
the insulation effectiveness, shows most values clustering between 0.5 to 
2.5 W/m²K. Detached buildings exhibit a broader range, including some 
buildings with U-values as high as 3.0 W/m²K, indicating poor insu
lation compared to terraced and semi-detached buildings. Window U- 
value is concentrated between 2.0 and 4.0 W/m²K across all building 
types, with terraced buildings showing slightly tighter clustering, indi
cating more uniform window insulation. Floor and roof U-values both 
show a wide range from 0.5 to 3.0 W/m²K, with no distinct patterns 
separating the building types. However, some detached buildings 
exhibit very high values for roof U-values, suggesting some buildings 
may require significant roof insulation improvements. Building Floor 
Area presents a distinct separation among building types. Detached 
buildings show the largest variability, ranging from 100 to over 300 m², 
while semi-detached and terraced buildings generally fall below 200 m². 
Building Height is another distinguishing factor. Detached and semi- 

Fig. 4. Uncertainty of set A as a function of Bel(A) and Pl(A) (Deng & Wang, 2021).

Algorithm 1 
Deriving sub-archetypes and assigned BPAs.

for all archetypes do 
for all parameters do 
Find lower and higher parameter limits Find BPA for parameters limits using KDE 
end for 
Combine parameters and form sub-archetypes 
Combine BPAs of parameters and derive BPAs of sub-archetypes 
end for 
Combine sub-archetypes to form Dn 
Calculate combined BPAs for Dn 
Calculate Bel(D) and Pl(D) for all possible Dn
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detached buildings range mostly between 6 and 10 m, whereas terraced 
buildings cluster around 10 m representing less uncertainty in their 
geometry.

4. Results

The following section begins by presenting a summary of the clus
tering analysis and the BPA derivation exercise. This is followed by the 
optimal renovation solutions, referred to as Pareto fronts, for individual 
archetypes, and collective retrofit measures for the district under two 
scenarios: 80 % and 60 % reductions in operational CO2 emissions. Next, 

the uncertainties across these scenarios are assessed using belief and 
plausibility functions.

4.1. Clustering and building archetypes

The minimum number of clusters is chosen according to elbow 
method (Fig. 7). As seen in the graph, the three building types are rep
resented by distinct lines: blue for detached buildings, orange for semi- 
detached buildings, and green for terraced buildings. For all building 
types, the RMSSTD metric decreases as the number of clusters increases, 
meaning that the clusters become more cohesive. However, the 

Algorithm 2 
Optimization algorithm for optimal de-carbonization scenario.

1. Generate a wide range of retrofit plans for each sub-archetype
2. Input sub-archetypes and their retrofit plans into energy simulation engine (e.g., EBECS)
for all sub-archetypes do 

a. Simulate current situation and all retrofit packages to derive EPC, costs, carbon emissions etc.
b. Filter packages achieving EPC < 100 kWh/m2/year for each sub- archetype
c. Find Pareto front of packages minimizing investment cost and car- bon emissions
end for 
1. Set district-level Carbon reduction target e.g. 60 percent reductions
2. Formulate optimization problem: 

a. Objective: Minimize district-level investment cost
b. Total Carbon emissions less than objectives

3. Use evolutionary algorithm (e.g., genetic algorithm with DEAP library)
4. Repeat 5 for convergence
Output optimal renovation package for each archetype and district-level summary

Fig. 5. District of Sint-Niklaas, showing different buildings clustered (different colors) into archetypes used for efficient calculations in the UBEM analysis.
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improvement in the metric slows down after a certain number of clus
ters, indicating diminishing returns. The optimal number of clusters 
appears to be around eight for different building typologies. The clus
tering results are documented in the table in Appendix A.

Fig. 8 combines box plots with violin plots for various building pa
rameters for one cluster. Red points represent the centroids of cluster 
derived from the data. The inclusion of centroids in these visualizations 
provides insight into the original archetypes. For instance, by analyzing 
the centroids alongside the distributional properties, it is inferred how 
much real building characteristics can differ from the values taken for 
the archetypes as focal clusters. To provide intuitive illustration, these 
variations are reported for d_6 corresponding to cluster number 6 from 
detached houses.

Fig. 8 also shows the lower and higher limits for each parameter 
ofd_6. d_6 represents an archetype and combination of these lower and 

higher limits for parameter values in d_6 will create sub-archetypes for 
archetype d_6. Similarly, each archetype will have multiple sub- 
archetypes. A complete list of the sub-archetypes with for each single 
parameter are documented in Appendix B. Afterwards, parameter values 
and their individual BPAs are combined to provide BPAs for sub- 
archetypes as documented in Appendix C.

4.2. Optimal solutions

Energy modeling and simulations were conducted for sub-archetypes 
derived from the upper and lower parameter limits of the original ar
chetypes, as explained above. Renovation packages include improve
ment in all the physical parameters such as windows and walls, and roof 
insulation. Heat pump is adopted in all the renovation scenarios if 
heating system is upgraded as a mandatory renovation measure. 

Fig. 6. Pair plot of building parameters (WWR, wall, windows, floor, and roof U-values in addition to building conditioned floor area and height) across detached, 
semi-detached, and terraced buildings.
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Installation of PV and its nominal capacity in addition to solar collectors 
are among renovation packages. Permutation of individual renovation 
measures in addition to the extent the renovation is applied will create 
an extensive list of renovation measures. For example, windows can be 
upgraded to double- and triple-glazing with different quality, accounted 
with different thermal transmittance coefficient. An excerpt of the out
comes of this intermediate step is shown in this section.

The scatter plot (Fig. 9) depicts the relationship between investment 
costs and CO2 emissions reduction for two distinct building focal clus
ters, illustrating trade-offs in retrofitting strategies. Note that the sim
ulations of the original archetypes are not part of the DST analysis and 
are provided solely to clarify the methodology.

Archetype d_5 (in red) displays a trend of lower costs and lower 
emissions, with investment costs ranging from 0 € (current situation 
shown with black points) to 1000 €/m² and CO2 emissions between 
0 and 25 kg/m². Highlighted points differentiate the scenarios by which 
the EPC will decrease below 100 kWh/m2/year. Most points in this 
archetype are concentrated below 1000 €/m² and 20 kg/m² CO2, sug
gesting cost-effective solutions for moderate emission reductions. In 
contrast, archetype d_6 (in blue) spans a wider range of investment 
costs, from 500€ to over 2000€/m², with CO2 emissions ranging from 10 
to 50 kg/m². This archetype shows that higher investment levels, 

particularly in the 1500–2000 €/m² range, tend to correspond with 
significant CO2 reductions, as low as 10–15 kg/m². However, some 
moderate-cost retrofits in this archetype also achieve CO2 emissions in 
the range of 20–30 kg/m², offering a balance between cost and emission 
reduction. The analysis emphasizes the trade-offs involved in retrofitting 
decisions: archetype d_6 allows for greater CO2 reduction but requires 
higher investments, while archetype d_5 presents more cost-efficient 
options with smaller environmental benefits. These findings are 
crucial for guiding decision-makers in optimizing renovation strategies 
in the district by balancing financial feasibility and environmental 
impact.

It was previously explained that each archetype has multiple sub- 
archetypes standing for having a variety of buildings within one 
archetype. Fig. 10 depicts the relation between carbon emissions and 
investment costs for renovation packages for all sub-archetypes and 
their renovation plan within the initial archetype for archetype d_6. 
Depending on how the current situation of the building is assumed, the 
renovation costs and predicted carbon emissions can differ. The Pareto 
front highlights that there are packages that are sub optimal because 
they cost more than others and save carbon emissions less than other 
packages. Pareto front of renovation packages is derived for each sub- 
archetype and used for further developing optimal decarbonization 

Fig. 7. Comparison between number of clusters and RMSSTD for the elbow method to indicate the optimal number of clusters in three building types.

Fig. 8. Comparison between parameter value ranges and their focal points for cluster 6_d of detached houses. Focal points of parameters used for making sub- 
archetypes and original archetypes are shown in red and blue respectively.
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pathway for the district.
In Fig. 10, sub_arch_51, shown in dark green, exhibits the lowest 

baseline emissions at approximately 55 kg/m², indicating better initial 
energy efficiency compared to other sub-archetypes, including the 
original archetype, sub_arch_52. The comparison between different sub- 
archetypes shows that differences in initial conditions gradually 
diminish as investment costs increase. The Pareto fronts for each sub- 
archetype are also depicted in Fig. 10, illustrating the trade-offs be
tween investment costs and carbon emission reductions.

In the next step, optimal design for the renovation package for the 
entire district was found considering individual and collective objec
tives. In individual building level, all renovation scenarios that achieved 
an energy performance of below 100 kWh/m2/year were first filtered to 
respect the optimization constraint, representing a legal requirement for 
building renovations. The collective objective is then respected by the 
optimization algorithm when proposing renovation packages for each 

building. Fig. 11 shows the outcomes of optimization step. Every point 
represents a renovation package for the district, consisting of renovation 
scenarios for individual building sub-archetypes in the district. Total 
investment costs and total operational CO2 emissions for each point are 
reported in the point.

The optimization algorithm iterated 500 times for each objective. 
This was devised because the algorithm is metaheuristic and cannot 
guarantee finding the global optimal solution. The package with mini
mum investment cost is chosen as the result of the optimal renovation 
package for the district for the given objective to continue with the 
uncertainty propagation.

4.3. Uncertainty analysis

Fig. 12 compares cumulative belief function (CBF) and cumulative 
plausibility function (CPF) of summation of investment costs for 

Fig. 9. Comparison of renovation options for archetype d_5 and d_6 in terms of total investment costs (€/m²) and resulting operational CO2 emissions (kg/m²).

Fig. 10. Pareto front for different sub-archetypes of the original archetype d_6 from detached houses.
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building archetypes renovation under the two intended carbon reduc
tion scenarios, being 80 % (Obj1) and 60 % (obj2) CO2 operational re
ductions in the district level. The absolute values of CBF and CPF 
associated with the investment costs show the level certainty of the 
costs. Moreover, distance between CBF and CPF reveal how much the 
investment cost can be deviated for a given certainty level (between 
0 and 1).

Fig. 12 demonstrates that achieving the 80 % CO2 reduction requires 
higher investments in high uncertainty areas (below 0.6) in comparison 
to 60 % reduction. For high certainties region the cost difference of the 
two scenarios is marginal, but there’s a risk of steep cost escalation for 
Obj2 (60 %) above 0.9 CDF. Also, a wider plausibility-belief gap is 
detected in this region. The graph also proves that the deterministic 
prediction of costs for both scenarios are supported with plausibility and 

belief functions. It is observed that the deterministic prediction of costs 
is relatively close to high certainty calculations, especially in lower 
objective.

Fig. 13 depicts the comparison between CBF and CPF for the two 
optimal renovation scenarios in addition to the current situation in 
terms of carbon emissions. The figure illustrates the dramatic differences 
between deterministic and non- deterministic predictions of the current 
situation carbon emissions. It also shows how carbon reduction can be 
significantly different in the two scenarios. However, it is observed that 
the uncertainties, plausibility-belief gaps, are overall higher than the 
investment costs.

The graph shows that the deterministic prediction for obj1 aligns 
with a very low CPF, indicating low plausibility for the deterministic 
value. In contrast, although obj2 is associated with higher carbon 

Fig. 11. Trade-off between total investment costs and operational CO2 emissions in the district under the two scenarios with different carbon emissions reduction 
objectives obj1 (80 %) and obj2 (60 %). Each dot represents optimal collection of renovation measures for individual building archetypes in the district to achieve 
obj1 or obj2.

Fig. 12. Uncertainty quantification of total investment costs for district renovation to achieve 60 % (Obj2) and 80 % (Obj1) CO2 reduction targets.
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emissions, its deterministic prediction is highly plausible. A significant 
uncertainty in predicting carbon emissions for the current situation is 
also observed. Overall, for the current situation the belief-plausibility 
gap is substantial, particularly for the deterministic value. This differ
ence between the current situation and future scenarios can be explained 
by the fact that future scenarios like 80 % and 60 % scenarios are con
strained by predefined renovation plans, leading to more limited set of 
options with predictable carbon emissions. Moreover, the 80 % scenario 
appears to offer a more robust solution for managing uncertainties in the 
calculation of carbon emissions compared to the current situation. The 
stark differences in carbon emissions in the 60 % and 80 % scenarios 
suggest that future building energy policies must adopt a multi-tiered 

approach to carbon reduction. The collective targets can help in 
finding more robust solutions with similar costs. Uncertainty can be also 
included in the optimization objective function to be minimized when 
finding the optimal design of the district. The latter will result in a robust 
optimization problem and requires non-trivial mathematical develop
ment to solve the problem.

The belief and plausibility curves for the 80 % scenario exhibit a 
narrower gap compared to the 60 % scenario, indicating reduced 
epistemic uncertainty in both investment costs and carbon emissions. 
This implies that the 80 % scenario is supported by a more consistent set 
of sub-archetype outcomes, making it more robust despite higher costs

Fig. 13. Cumulative distribution of CBF and CPF of district CO2 emissions under different scenarios named current conditions, 80 % CO2 reduction (Obj1), 60 % CO2 
reduction (Obj2), in comparison to deterministic prediction of emissions.

Fig. 14. Comparison of the frequencies of renovation measures selected under the 80 % and 60 % carbon emission reduction scenarios.
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4.4. Sensitivity of renovation measures to decarbonization scenarios

It was previously observed in Fig. 11 that the optimization algorithm 
provides a variety of optimal solutions for building renovations at dis
trict level. The optimization outcomes for the two scenarios, 80 % and 
60 % reductions in carbon emissions, adhere to their specific constraint 
boundaries, being 80 % and 60 % carbon emissions reductions for the 
entire district, while offering different combinations of renovation 
measures for individual buildings. In this section we further investigate 
the optimal solutions to decode whether there is meaningful difference 
between renovation measures proposed by the optimization algorithm 
for the two scenarios. We first extract frequency of different renovation 
measures in each scenario and then conduct statistical tests to check if 
the difference is statistically significant.

Fig. 14 provides a side-by-side comparison of the frequencies of 
different renovation measures that appeared in all optimal solutions 
under two distinct scenarios: the 80 % scenario and the 60 % scenario. 
The p-values annotated above each measure result from a Chi-squared 
statistical test assessing whether the frequency difference between the 
two scenarios is statistically significant.

The comparison of renovation measure frequencies between the 80 
% and 60 % scenarios reveals clear patterns in technology adoption. Air- 
water HP without floor heating and normal PV installation emerge as the 
most frequently selected measures across both scenarios, with signifi
cantly higher adoption in the 80 % scenario. Note that PV installation 
measure in our simulations is a function of building electricity demand. 
PV size is calculated according to the maximum demand of the building. 
Normal PV accounts for covering building demand with 35 % self- 
consumption as assumption, and “full-roof” measure offer larger PVs 
and assumes exporting electricity to the grid (Appendix D).

Statistical testing confirms that for the major measures, such as heat 
pump, PV installation, and higher insulations for windows and walls, 
differences are statistically significant, with p-values below 0.05. This 
indicates that stricter carbon reduction targets in our simulations lead to 
a more homogenous uptake of impactful renovation technologies.

5. Discussion

5.1. Further exploration

In this study, a novel methodology was developed and demonstrated 
for propagating epistemic uncertainties in estimated investment costs 
and operational carbon emissions associated with collective building 
renovation strategies at the district level. Compared to conventional 
approaches, such as MCS, the proposed DST-based method requires 
significantly fewer energy simulations to generate probability distribu
tions for belief and plausibility functions. This computational efficiency 
makes the methodology particularly suitable for UBEM applications at 
city and district scales. An additional strength of the presented method 
lies in its ability to incorporate expert opinions and incomplete data, 
making it feasible to conduct uncertainty analyses even in contexts 
where detailed and high-quality input data are unavailable. The meth
odology does not particularly need input data distributions because 
basic mass functions can be given by experts. Moreover, the approach 
directly quantifies how data limitations translate into uncertainty in 
projected outcomes.

While an explicit comparison between MCS and DST for the full case 
study was not feasible due to computational prohibitions (the case study 
requiring over 70 million simulations under MCS assumptions), 
comparative studies for individual buildings reported in the literature 
(ieter Tian et al., 2018; Xuanyuan, Yao, Knefaty & Laurice, May 2024) 
confirm that MCS outcomes theoretically and practically fall between 
the belief and plausibility bounds generated by DST, validating the 
effectiveness of DST in uncertainty propagation. The trade-off lies in 
reducing both computational effort and input requirements, with the 
resulting outcomes expressed as bounds rather than single-point values.

5.2. Limitations of the study

The case study results revealed that stricter decarbonization targets 
(e.g., 80 % reduction scenarios) tended to produce more robust and less 
uncertain outcomes with similar costs compared to less ambitious tar
gets (e.g., 60 % reductions). Nevertheless, the underlying causes for the 
observed variations in uncertainty levels between scenarios were not 
explicitly identified. Future research should therefore include a detailed 
sensitivity analysis to investigate whether uncertainty levels correlate 
systematically with carbon reduction objectives, and to explore the in
fluence of selected retrofit technologies on uncertainty propagation.

A further avenue for improvement lies in analyzing the trade-offs 
between the number of archetypes and sub-archetypes and the result
ing belief-plausibility gaps. While a higher number of sub-archetypes 
can reduce uncertainty, it also increases computational effort. Identi
fying an optimal balance between model granularity and computational 
feasibility would enable more interactive and iterative energy planning 
workflows, allowing planners to dynamically adjust models as better 
data becomes available.

From an economic evaluation perspective, investment cost was 
selected as the primary financial metric to minimize the influence of 
aleatoric uncertainties such as fluctuating energy prices, taxes, and 
subsidies. This choice ensured that the study focused purely on 
epistemic uncertainty arising from building characteristics and retrofit 
options. Nonetheless, it is acknowledged that this simplification limits 
the realism of financial outcomes, which could be addressed in future 
work by integrating Total Cost of Ownership (TCO) or operational cost 
dynamics under a more sophisticated uncertainty framework.

5.3. Future work

The DST methodology also presents certain challenges. The inter
pretation of belief and plausibility measures is not straightforward and 
may require additional processing to be easily usable in decision-making 
contexts. Measures such as Deng’s entropy (Deng & entropy, 2016; Deng 
& Wang, 2021) offer a way to summarize uncertainty as a single KPI, but 
these still lack direct interpretability in relation to physical building 
attributes. Dedicated research on developing more intuitive KPIs linked 
to DST outputs could further enhance the applicability of this method for 
practical urban energy planning.

Several modelling simplifications were necessary to make the study 
tractable, such as assuming uniform occupant behaviour, constant en
ergy conversion factors, and fixed system efficiencies across the building 
stock. Although these assumptions limit the absolute accuracy of in
vestment and carbon emission estimates, the primary objective of the 
study was to demonstrate a scalable method for uncertainty propaga
tion, rather than to provide definitive quantitative or qualitative policy 
recommendations.

Moreover, the DST-based methodology was applied exclusively to 
residential buildings. It remains an open question how different building 
typologies, such as commercial, industrial, or office buildings, will 
impact the sensitivity of belief and plausibility distributions, especially 
given their more complex and varied HVAC systems, occupancy pat
terns, and operational schedules. Comparative studies across building 
types could help to refine DST-based UBEM tools and better target un
certainty mitigation strategies.

6. Conclusions

This study introduces a novel framework for incorporating epistemic 
uncertainty quantification into Urban Building Energy Modeling 
(UBEM) through the Dempster-Shafer Theory (DST). By applying this 
methodology to a case study in Sint-Niklaas, Belgium, we demonstrated 
the benefits of integrating uncertainty quantification into the planning 
process for urban energy retrofits. The case study explores the complex 
interplay between carbon emission reductions, investment costs, and the 
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technical challenges of retrofitting residential buildings, offering critical 
insights into the feasibility of achieving collective CO2 emissions 
reduction targets in the district.

UBEM is increasingly using data-driven methods to simulate the 
energy performance of building stocks. These methods must account for 
GDPR rules, limited data availability, and computational constraints. To 
improve efficiency, UBEM uses representative buildings, called arche
types, that stand in for groups of similar buildings. Archetype modeling 
can increase computational efficiency with a limited uncertainty of the 
results. However, it can only provide a deterministic value without 
indicating the probability of outcomes. While Monte Carlo Simulations 
(MSCs) can be used to generate probability distributions, they are 
computationally intensive and prohibitive at an urban scale. They also 
do not explicitly report uncertainty as KPIs.

This study proposes a framework that integrates uncertainty quan
tification using Dempster-Shafer Theory (DST). This framework explic
itly reports uncertainties with lower computational demand. We derived 
archetypes of similar buildings and then divided each of them to sub- 
archetypes with associated probabilities, forming a probabilistic space. 
A methodology was presented to derive probability of sub-archetypes of 
buildings. A collection of renovation packages was applied to sub- 
archetypes and energy simulations were run to derive carbon emis
sions and costs before and after retrofits. Optimal renovation packages 
that respected carbon emissions limitation, being 80 % and 60 % carbon 
emissions reduction, at district levels were found with an optimization 
algorithm. Finally, the belief-plausibility gap was reported as an un
certainty measure according to DST.

The comparison of 60 % and 80 % CO2 reduction scenarios highlights 
the importance of uncertainty in decision-making. While the 80 % sce
nario demonstrates better environmental outcomes, it requires greater 
upfront investment, especially in high uncertainty areas. On the other 
hand, the 60 % scenario presents a more financially feasible option with 
lower initial costs but resulted in higher uncertainties. It was observed 
that investment costs are prone to more uncertainties in comparison to 
carbon emissions. This was related to the fact that multiple renovation 
plans with different investment costs can achieve similar carbon emis
sions reduction. The clear trade-off between uncertainty and costs of a 
scenario enables decision-makers to evaluate and mitigate associated 
risks.

Further research should explore a concise indicator for reporting 
uncertainty as a KPI. Moreover, conducting a sensitivity analysis on 
intermediate parameters, such as the number of archetypes and sub- 
archetypes, can enhance the tool’s practicality and effectiveness. 
Finally, future studies should consider integrating dynamic factors such 
as fluctuating energy prices and occupant behavior to account for both 
epistemic and aleatoric uncertainties.
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