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Urban energy planning and design are inherently challenged by a lack of granular input data, resulting in
epistemic uncertainties. This study focuses on methodologies to quantify and propagate these uncertainties to
support decision-making in urban energy planning. Specifically, we examine the use of clustering techniques,
commonly applied to model districts with limited building archetypes. We demonstrate and measure un-
certainties that archetype modeling introduces in the outcomes. To this aim, we developed a novel methodology
grounded in Dempster-Shafer theory (DST) of evidence and demonstrate it using a case study district in Belgium.
Using the EnergyVille Building Energy Calculation System (EBECS) and a metaheuristic optimization algorithm,
we evaluate two collective decarbonization scenarios targeting 60 % and 80 % reductions in operational carbon
emissions for residential buildings across the district. We propose methods to derive sub-archetypes, and their
probability mass functions within each archetype. Then, belief and plausibility functions are calculated to predict
distribution functions of outcomes, while saving a significant number of required simulations in comparison to
existing methods such as Monte Carlo simulations that are prohibitive at an urban scale. Our results reveal that
the 60 % reduction scenario, while appearing cost-effective under deterministic assumptions, carries high un-
certainty, potentially leading to higher carbon abatement costs than predicted. In contrast, the 80 % scenario is
more robust under low-uncertainty conditions. This research demonstrates the critical role of uncertainty
quantification as a key performance indicator in urban energy planning, supporting decision-makers in miti-
gating financial and environmental risks.

1. Introduction reducing operational carbon emissions (Esfandi et al., 2024;IEA, 2024;

[EA, 2021). Finding solutions to reduce carbon emissions while also

Urban energy demand continues to rise and will increase substan-
tially due to rapid urbanization, with over two-thirds of the global
population expected to reside in urban areas by 2050 (IEA, 2024). Cities
need to become more energy-efficient, sustainable, and resilient to
climate change to cope with this rapid urbanization. This often involves
retrofitting existing buildings (BPIE - Buildings Performance Institute
Europe, 2021), (IEA, 2022) to enhance energy performance, integrating
local renewable energy sources to maximize self-sufficiency, and

minimizing expenses is a complex, multidimensional process (Aratjo,
Gomes, Ferrao & Gomes, Dec., 2024). Planning without considering
uncertainties can lead to over- or under-investment, potentially jeop-
ardizing the cost-effectiveness of proposed strategies. Moreover, un-
certainty quantification ensures that resources are allocated to measures
with the highest likelihood of achieving desired outcomes to support
successful policymaking (Asadi, Chenari, Gaspar & Gameiro da Silva,
May, 2023). In this process, urban building energy modeling (UBEM) is a
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tool that supports urban planners for informed decision-making and
optimal urban energy planning. UBEM outcomes are subject to two
distinct types of uncertainties: epistemic and aleatoric. Epistemic un-
certainties arise from incomplete knowledge, input data limitations, or
model simplifications, which are reducible with more information.
Aleatoric uncertainties, on the other hand, stem from inherent
randomness and variability in weather conditions, energy prices, and
occupant behavior, making them irreducible. Fig. 1 illustrates the rela-
tion between total uncertainties and its epistemic and aleatoric nature.
Epistemic uncertainties can be decreased to a certain level by more data
gathering. Aleatoric uncertainties can be only reported to help
decision-makers to search for risk mitigation options. This paper focuses
on developing a method to quantify epistemic uncertainties resulting
from simplifications and lack of quality data that are inevitable in
large-scale analyses in urban building energy modeling and simulations.
The application of the proposed method is demonstrated for residential
building stock in a Belgian district due to the availability of detailed EPC
data, relevance to policy frameworks.

The paper is structured as follows. Section 1 reviews the existing
literature on UBEM, highlighting current methodologies, key limita-
tions, sources of uncertainties, and methods for uncertainty quantifica-
tion and the need for this study. Section 2 elaborates on the methodology
used in this study, including data collection, clustering buildings to
derive archetypes, building retrofit strategy development, and the
developed uncertainty propagation method based on Dempster—Shafer
theory (DST) of evidence. Section 3 provides information about the case
study used in the article. Section 4 presents the results of the case study,
discussing how input data quality, retrofit strategies, and investment
cost uncertainties can influence expected operational carbon emissions
from buildings and cost-effectiveness of building retrofits. Section 5
presents discussions about implications of the findings, limitations of
this study, and recommendations for future research. Finally, Section 6
provides conclusions, emphasizing the need for scalable and flexible
UBEM models that incorporate uncertainty quantification to guide
policy- and decision-making.

1.1. Urban building energy modelling: existing tools and practices

UBEM serves as a critical tool for managing the complexity of
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Fig. 1. Conceptual relation between total uncertainty with epistemic and
aleatoric uncertainties. Blue dashed line shows minimum epistemic uncertainty
that must be quantified.

Sustainable Cities and Society 130 (2025) 106520

modern urban energy systems, particularly in the pursuit of sustainable,
resilient, and energy-efficient cities (Deng, Javanroodi, Nik & Chen,
Sep., 2023). By simulating the energy performance of buildings at the
city or district scale, UBEM empowers planners to evaluate the intricate
trade-offs between energy efficiency, costs, carbon emissions, and social
equity. UBEM facilitates informed decision-making on retrofitting
measures, renewable energy generation strategies, and policy in-
terventions, all while considering economic and social implications.

UBEM methodologies generally adopt either bottom-up or top-down
modeling approaches. Top-down models treat the entire building sector
as a single or very limited number of elements to estimate energy con-
sumption on a large scale in national level. In contrast, bottom-up
modeling approaches analyze individual buildings and their end-uses,
estimating energy consumption at the level of single buildings or
groups of buildings (Ali et al., Sep., 2021). Bottom-up modelling re-
quires detailed physical attributes such as construction materials, ge-
ometry, and heating and cooling and air conditioning (HVAC) systems
(Kamel, Nov., 2022). Conversely, top-down models leverage statistical
or econometric methods to estimate energy consumption using aggre-
gated data, including historical energy use, socio-economic factors, and
urban density (Wong et al., Nov., 2021), more applicable on national
level energy modeling.

Bottom-up models are developed using building energy simulation
engines like EnergyPlus (EnergyPlusTM, 2017), accompanied by pro-
grams such as CityBES (Chen et, al.), and URBANopt (El Kontar et al.,
2020) hosting integrated tools for post-processing and optimization
tasks to derive optimal design on urban scale. Also, building models in
the bottom-up approach can be developed with in-house developed tools
tailored for available input data.

To further streamline complex urban models, similar buildings are
grouped into representative archetypes, reducing computational de-
mands while maintaining reasonable accuracy (Dahlstrom, Johari,
Brostrom & Widén, Jan., 2024). These building archetypes are often
derived using clustering techniques complemented with expert analysis
for fine-tuning and sanity check (Guo, Bachmann, Kersten & Kriegel,
2023), (Prina et al., 2024). A common approach is to use Energy Per-
formance Certificates (EPC) of buildings as the basis and use data
analysis to provide essential inputs for energy simulations in UBEM. For
instance, Johari et al. developed a UBEM using geo-referenced EPC data
for two Swedish cities, Borlange and Uppsala (Johari, Shadram &
Wideén, Sep., 2023). A common application of UBEM is to explain energy
retrofit measures for decarbonation of building stock (e.g., (Ferrari &
Beccali, 2017), and (Li & Feng, 2025))

1.2. Input data for UBEM

Input data for UBEM encompasses a wide range of detailed infor-
mation to ensure accurate energy simulations at the building and district
levels. Although there has been a wide range of data enhancement
methods for building energy simulations (Sharifi et al., 2023), there is
still difficulty in acquiring minimum data for UBEM. Minimum UBEM
inputs include building characteristics (geometry, materials, insulation),
HVAC and lighting specifications, climate and weather data, and occu-
pancy patterns. UBEM integrates data-driven techniques and probabi-
listic modelling to overcome three main limitations being General Data
Protection Regulation (GDPR), input data, and computational power
(Wang et al., Jun., 2022).

Piro et al. (Piro, Ballarini and, Corrado) focused on the input data
limitations, requirements, and modeling assumptions necessary for
UBEM. They highlight how UBEM introduces simplifications, such as
aggregated building geometry, which reduces computational costs but
also lead to uncertainties in energy performance predictions. De Jaeger
et al. (De Jaeger, Lago & Saelens, 2021) showed the importance of
advanced sampling methods in input data generation and proposed a
probabilistic building characterization approach for archetype buildings
to quantify uncertainty in district heat demand arising from modeling
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simplifications. Using quantile regression and copula methods, the study
focused on the interdependencies between key building parameters like
U-values and window-to-wall ratios. The findings underscore the
application of advanced data analysis techniques in UBEM to overcome
barriers in input data acquisition. Ferrando et al. (Ferrando et al., 2022)
developed building archetypes according to occupant behavior sched-
ules in order to provide results close to operational conditions. Bass et al.
(Bass et al., 2022) compared UBEM simulation results to measured en-
ergy data across a large building stock to highlight biases introduced by
using coarse building metadata (archetypes). They conclude that current
methods can predict energy demand accurately on the district level.
However, on the individual building level, outcomes are subject to sig-
nificant errors. The authors demonstrated the need for better data res-
olution and aggregation methods to improve UBEM accuracy in the
individual building level. This problem is pronounced strongly when
renovation measures are desired as the main outcomes. Renovation
measures heavily depend on current individual building conditions.

1.3. Uncertainty analysis and UBEM

Lack of input data and its consequent data enhancement methods for
input data and simplifications of models lead to uncertainties in the
outcomes (Ferrando, Causone, Hong & Chen, 2020). Several methods
exist for quantifying uncertainties in UBEM outcomes, including Monte
Carlo simulations (MCS), Bayesian approaches, stochastic modelling,
scenario development, and DST ( (Guo, Haris, Sharifi & Saelens, Jan.,
2025; Oraiopoulos & Howard, Apr., 2022; Shamsi, Ali, Mangina &
O’Donnell, Oct., 2020; eonsook Tian et al., 2018; Yan, Tang & Li,
2024)). Kong et al. (Kong et al., Aug., 2023) conducted a systematic
review of UBEM challenges and opportunities, focusing on the methods,
tools, and workflows that are currently adopted. The paper identifies
significant gaps in input data collection, model calibration, and simu-
lation methods, highlighting the complexity of urban energy systems
and the need for more integrated and scalable UBEM approaches. On the
other hand, it has been explored how lack of accurate input data can
impact the outcomes of UBEM (Geske, Engels, Benz & Voelker, Sep.,
2023). However, current models often fail to address uncertainty
comprehensively, particularly in output interpretation (Kong et al.,
Aug., 2023). A conventional method only shows the range of possible
outcomes without identifying their likelihood and significance to guide
the decision-makers in interpretation.

One of the most common probabilistic approaches in UBEM is MCS
[33], where multiple simulations are run using random input values
drawn from probability distributions ((Lin et al., 2023; Ohlsson &
Olofsson, May, 2021)). These distributions represent uncertainties in
parameters such as insulation levels or HVAC efficiency. By running
thousands of iterations, Monte Carlo methods generate a distribution of
possible outcomes, providing insights into the likelihood of different
energy performance scenarios. Prataviera et al. (Prataviera, Vivian,
Lombardo & Zarrella, Apr., 2022) evaluated the impact of input un-
certainty on UBEM by applying forward uncertainty analysis (UA) and
sensitivity analysis (SA) to a case study in Milan. Using MCS, the study
focused on input parameters like building geometry, envelope proper-
ties, and occupancy behavior, which are typically uncertain in
large-scale urban models. Notably, the previously observed 80 % over-
estimation in peak heating demand is reduced to 25 % when stochastic
variation is included, illustrating the importance of probabilistic UBEM
approaches. Zhan et al. (Zhan, Sezer, Hassan & Wang, Sep., 2023)
conducted a comparative analysis of uncertainty characterization
methods in UBEM applied to a case study in Qatar. The authors
compared a deterministic approach with two probabilistic approaches
using different Probability Distribution Functions (PDFs) to propagate
uncertainties of input parameters to outputs.

Wang et al. (in Wang et al., 2025) adopted scenario development
method and incorporated measurement data to calibrate their building
thermal models to achieve high accuracy of energy simulations. Yan
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et al. (Yan, Tang & Li, 2024) argue that the availability of data for
calibration models is always a barrier. Hence, they proposed scenario
development method for quantifying uncertainties. On the other hand,
limitation of the number of scenarios provides a limited and coarse
uncertainty quantification which makes their approach case specific,
such as when considering finite future climate scenarios as exercise in
Liu et al. (2023). Wang et al. (i Wang et al., 2025) adopted a compu-
tationally expensive method that combines statistical models (MCS) and
distributions of inputs to provide a refined distribution of outcomes
under multiple scenarios. Their method, however, was applied to one
office building to find optimal renovation strategy under uncertainty.

Thrampoulidis et al. (Thrampoulidis, Hug & Orehounig, 2023)
explain why there is a need for a method to derive near-optimal building
energy retrofit measures. They explain the necessity of bottom-up
models to derive actionable outcomes. They address the computa-
tional challenges of city-scale retrofit optimization by developing scal-
able surrogate modeling. The authors demonstrated their surrogate
UBEM using a case study district with over 1400 buildings. However, the
task of developing surrogate models was not simply replicable and the
method remains case specific.

Li et al. (Li, Zamanipour & Keppo, 2024) developed a multi-output
machine learning model for building energy prediction across
different time scales (daily, monthly, and annual), using Bayesian
adaptive spline surfaces and deep neural networks. The study demon-
strates that multi-output models can capture energy use correlations at
multiple scales, significantly improving accuracy and reducing un-
certainties and computational costs compared to single-output models.
The authors applied Latin Hypercube Sampling for input parameter
variability and tested the models on an office building in Tianjin, China
addressing energy prediction accuracy and scale accumulation. Hwang
et al. (Hwang, Lim & Lim, 2024) adopted Bayesian methods to enhance
the prediction of building energy demand by applying corrections to
building geometry data. Their approach focused on improving the
quality of geometrical inputs, which in turn led to more accurate energy
simulations and calculations. However, their Bayesian framework
exhibited limitations in distinguishing between buildings that have
similar energy consumption but differ in structural or physical charac-
teristics. This limitation is particularly critical in the context of building
retrofit planning, where both energy performance and detailed building
features must be considered. Dempster—Shafer Theory (DST) is a subset
of Bayesian methods and has gained attention as a tool for epistemic
uncertainty quantification in building energy modeling. Unlike Bayesian
methods that require precise prior probability distributions (ieter Tian
etal., 2018), DST works with belief functions to provide lower and upper
probability bounds (Deng & entropy, 2016) (belief and plausibility) for
outcomes. This allows integration of ambiguous or sparse information
from multiple sources, making DST a promising alternative or comple-
ment to Bayesian approaches for modeling uncertainty (Deng & Wang,
2021). Xuanyuan et al. (Xuanyuan, Yao, Knefaty & Laurice, May, 2024)
investigate the application of DST for sensitivity analysis in evaluating
the impact of occupant behavior on building energy performance. The
authors combine this approach with machine learning techniques to
accelerate data processing and enhance model accuracy. The findings
suggest that this hybrid method improves both the reliability of energy
evaluations and the cost-effectiveness of building operations by select-
ing optimal model parameters through global sensitivity analysis. While
the study focuses on occupant behavior, it does not explore the broader
application of this method to retrofit measures or investment cost
uncertainties.

1.4. Gaps and motivation

Overall, probabilistic modelling enhances UBEM’s ability to upscale
and cope with lack of quality input data. These diverse methods and
tools allow UBEM to tackle complex urban energy systems, providing
planners with actionable insights for sustainable urban development.
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However, existing methods are either specifically designed for their
applications, or they provide general methods that rely on extensive
computational power to repeat simulations with a wide range of input
data to propagate uncertainty of outcomes. Climate change impact,
occupant behavior, and energy prices are among parameters that
contribute to aleatoric uncertainties that have been mostly studied in
existing literature.

A major gap in current UBEM approaches is the systemic treatment
for propagating epistemic uncertainties. UBEM relies on simplified as-
sumptions, such as clustering techniques, causing inaccuracies and
oversights. However, the outcomes are conventionally presented with
deterministic Key Performance Indicators (KPIs). This can be due to
limitations of building-related input data or high computational costs of
uncertainty analysis. Even when uncertainties are reported, they are
typically given as just a range of outcomes, with little indication of
uncertainty itself as a KPI.. Uncertainty KPI provides the basis for risk
management, which is an essential part of investment planning. If un-
certainties are not comprehensible, risks can be overestimated leading to
rejection of feasible plans. On the other hand, if risks are not predicted
and mitigated, failure of one proposed plan can hinder future urban
energy planning efforts. We develop and demonstrate a method that can
incorporate uncertainty analysis in the planning so that energy planners
can weigh it against costs and carbon emissions.

2. Materials and methods

It was previously discussed that UBEM inevitably deploys data-
driven techniques to simulate the energy performance of building
stock while respecting limitations in GDPR, input data, and computation
power. Data-driven techniques for UBEM rely on adoption of the most
representative buildings, named archetypes or building clusters, in the
district to report the results with minimum error in a deterministic
approach. Archetypes are the most probable scenarios of all possible
scenarios for a group of buildings of which the precise and granular
input data are not available. While uncertainty propagation in this study
attempts at reporting a probability distribution of outcomes, enabling a
decision-maker to screen optimistic and pessimistic scenarios for an
evidence-based decision-making. Current uncertainty propagation in
UBEM is typically presented only through the outcomes of different
input sets, rather than being explicitly quantified and used as a KPI in
decision-making. Besides, generating probability distribution has been
practiced using MCS which is computationally expensive and inhibitive
on the urban scale.

In this study, we address these gaps by developing a framework that
integrates uncertainty quantification using DST, allowing for explicit
reporting of uncertainties in investment costs for retrofit scenarios, and
operational carbon emissions from households in the district as two
chosen design parameters for upgrading energy performance of the case
study district. We first apply exploratory data analysis and then employ
a clustering approach to group buildings by archetypes. Uncertainty
measures and energy related outcomes are derived in next steps. We run
building energy simulations to explore the impact of retrofit strategies
under different obligatory CO, reduction scenarios for the district. The
process workflow is illustrated in Fig. 2 and elaborated below.

2.1. Input data analysis

The methodology for this study begins with the collection and pro-
cessing of input data required for UBEM. The input data generally
consists of building geometries, materials, HVAC system specifications,
historical energy consumption, and local environmental factors such as
weather conditions and solar radiation. Buildings are classified into
multivariate clusters based on key parameters such as construction type,
physical and geometrical parameters, and heating systems (Li, Zama-
nipour & Keppo, 2024).

In this study building physical attributes for the case study district
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Fig. 2. Process workflow deployed using the devised uncertainty quantification
methodology.

were provided by the Flemish Institute for Technological Research
(VITO) using anonymized Energy Performance Certificate (EPC) data
from the Flemish Energy and Climate Agency (VEKA). The data includes
distributions of construction year, conductivity of windows, externals
walls, roofs, and floors according to the EPC database. Moreover,
geometrical attributes such as building floor area, window to wall ratio
(WWR), building heights, and building volumes were provided by the
VITO dataset aggregated from different sources. An excerpt of the dis-
tribution of input data is visualized in the results section within
exploratory data analysis and clustering outcomes.

2.2. Building archetypes

In this study, building physical parameters that are involved in un-
certainty analysis are specific thermal conductivity of external walls,
windows, roof, floor that are required for the energy simulation engine.
Geometrical parameters are WWR, total conditioned floor area, and
height. The heating system in UBEM is modeled using efficiency of the
production unit and fuel type being diesel, natural gas, electricity. Note
that we did not include heating system efficiency and type in the un-
certainty analysis. Heating systems of the given cases are given as
deterministic input parameters. Efficiency of emission system is directly
applied to heating system for simplification of data analysis. These eight
parameters were chosen for the analysis considering available input data
and the importance of parameters in the UBEM outcomes (De Jaeger,
Reynders, Callebaut & Saelens, 2020; Ghiassi & Mahdavi, 2017; Men-
berg, Heo & Choudhary, 2016).

Clustering techniques are common tools to be adopted for deriving
representative archetypes where each cluster explains an archetype (De
Jaeger, Reynders, Callebaut & Saelens, 2020), (Prina et al., 2024). We
use k-means clustering technique which is computationally fast and
outperforms other techniques in this application according to the
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previous studies such as in (Aggarwal); Goy, Coors and Finn (2021);
Dahlstrom, Johari, Brostrom and Widén (2024). Results of k-means are
also impacted by the scale of the input data and hence the data must be
standardized at the first step. The k-means technique uses Euclidean
distance (Dahlstrom, Johari, Brostrom & Widén, Jan., 2024),
(Aggarwal) between data points and center of clusters and aims to find
the minimum sum of all distances according to Eq. (1).

k
Dist = min x —G)? 1
ceC ;;( l) ( )
Where Dist is the performance parameter related to Euclidean dis-
tance in a multi-dimension domain and C is the center of clusters and the
optimization variable. x represents a data point within the set X, which is
the set of all possible datapoints, and k is the number of clusters.
Defining the number of clusters is not straightforward as explored by
Dahlstrom et al. (Dahlstrom, Johari, Brostrom & Widén, 2024). A
common approach for determining the optimal number of clusters is
named elbow method. It identifies the point where increasing the
number of clusters no longer results in a significant decrease in the error
metric. In this method, the number of clusters is increased, and the error
criteria is reported and monitored iteratively. The iteration stops when
the error is not significantly decreasing. However, the error criteria also
have been extensively criticized and elaborated (Halkidi, Batistakis &
Vazirgiannis, 2001). In this study we used root-mean-square standard
deviation (RMSSTD) as proposed by Dahlstrom et al. (Dahlstrom, Johari,
Brostrom & Widén, 2024) and calculated using Eq. (2).

k

1 1 _
2> -x)° @

-1 j=1

RMSSTD =

Where n is the number of data points, v is the number of variables, x;
is the value of the i th data point for the j-th variable, X; is the mean of the
j-th variable within cluster.

2.3. Building energy efficiency measures

The building archetypes feed inputs into our energy simulation en-
gine, EnergyVille Building Energy Calculation System (EBECS)
(energyville.be/en/product/ebecs-tool), which generates a
physics-based monthly steady state energy balance model of the given
building. EBECS is a white-box model following Belgian EPC logic for
energy demand of residential buildings. It uses a simplified model of
heating system accounting for a combined efficiency of production and
emission units. EBECS incorporates detailed renovation datasets to
simulate energy efficiency measures. These retrofitting measures
include improvements in wall and roof and floor insulation, window
replacements, HVAC system upgrades, and the integration of renewable
energy technologies such as solar photovoltaic panels. Appendix D
provides a list of individual building retrofit measures and their speci-
fications. Each archetype’s energy performance is simulated both before
and after multiple retrofitting to evaluate the potential energy savings,
carbon emissions reductions, and associated costs. Retrofit sets are
derived from permutation of different individual measures applied to
individual building elements, making different combinations of retrofit
measures. The choice of energy simulation engine does not form an
essential part of this study. The methodology can be replicated with any
established building energy and renovation simulation engine.

2.4. Uncertainty propagation

In a deterministic approach, the district is represented by the ar-
chetypes derived in the previous section using combined clusters of
parameters. However, each cluster takes the parameter values of focal
points, while the real values for buildings are distributed. In the devel-
oped methodology, we propose using a higher and a lower value limit
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for parameter values of each cluster. The lower and higher values form
sub-clusters and accordingly form sub-archetypes. The set of all com-
binations of sub-archetypes for a given archetype defines a probabilistic
space characterized by assigned probabilities. Thus, a deterministic
archetype is transformed into a probabilistic representation composed of
its sub-archetypes.

In the next step at the district level, various combinations of sub-
archetypes form a probabilistic space that encompasses all possible
configurations representing the district. In other words, each probabi-
listic event corresponds to a specific set of sub-archetypes that together
explain the district. In a deterministic approach, the single set of ar-
chetypes with the highest likelihood is used to represent the district. In
the proposed method, however, the district is represented by combina-
tions of sub-archetypes, each associated with a given probability. This
set of sub-archetypes is then used for energy and retrofit simulations,
with the results reported through belief and plausibility distribution
functions, as defined by DST explained below.

The DST of evidence, also known as the Theory of Belief Functions or
Evidence Theory, is a mathematical framework for reasoning with un-
certainty. It generalizes the Bayesian theory of probability and in-
troduces belief and plausibility functions to derive distributions of
outcomes without the need for precise input probability distributions
(ieter Tian et al., 2018). Moreover, DST provides a means for quantifying
epistemic uncertainties by representing what we know about the system
through a belief function and weighing it against what we do not know,
captured by the plausibility function.

In a deterministic analysis, the district is explained with the original
archetypes without a probability distribution. The summation of energy
demand for all the archetypes multiplied by the number of buildings in
each archetype will show the aggregated energy demand for the district.

In the proposed method, the district is represented with set ®={D1,
...,Dn} with a probability m(D,) for each event Dn. D, in our study is
formed with a combination of sub-archetypes, Dn={An,1,..Anm}, so that
each main archetype with identifier 1 to m must be represented by one
and only one of its sub-archetypes in each event Dn. Similar to con-
ventional archetype modeling, each sub-archetype represents a cluster
of buildings. The total number of buildings in the district is presented by
the summation of buildings in each cluster, and accordingly, related
outcomes f(Dn), such as energy demand, carbon emissions, and costs are
multiplied by the number of buildings in each sub-archetype and
aggregated as shown in Eq. (3).

f(Dn) = > " f(An,i) « Ni 3)
i=1:m

Where, m is number of original archetypes and their identifier,
whereas n is the identifier of event Dn. N;j is the number of buildings in
sub-archetype i. DST investigates all possible combinations of events in
O in a set named power set (2°). As such, DST makes sure that any in-
formation that is available to support any event from ® will be counted
in the analysis (present in the power set) and hence absence of knowl-
edge about the system is reflected. Summation of probabilities of all
possible events in the power set 2° equals to 1 as shown in Eq. (4) ac-
cording to DST.

Z m(Dn) =1, s.t. m(@) =0 @

DC20

To calculate probability of each event D,, m(Dn), probability of its
sub-archetypes must be calculated first. Each sub-archetype has an
associated probability mass function named Basic Probability Assign-
ment (BPA) (Fei, Xia, Feng, & Liu, 2019). BPA of sub-archetypes is
function of BPA of its parameter’s values. Simply put, sub-archetypes
with more probable parameter values will themselves be more prob-
able. We propose using PDF to derive probability mass functions for BPA
for each parameter according to the available distribution of input data
(Xu, Deng, Su, & Mahadevan, 2013). This allows automating and
upscaling the process, hence realization of the method in the application
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of UBEM. Additionally, our method enables the adoption of low-quality
and limited-quantity data as a practical approach to advancing UBEM.

To derive BPAs for all parameters, we fit a kernel density function to
each parameter distribution for each archetype. Then, the data range is
discretized, and the data are clustered. If only one cluster is used, the
BPA will be equal to 1, corresponding to the focal point of the cluster,
resulting in a deterministic view of that parameter. We use two clusters
for each parameter, providing two focal points representing the upper
and lower limits of the range for that parameter. The cumulative prob-
ability of the cluster within the parameter is assigned to the focal point
of the cluster hence BPA is derived for that parameter value (Fig. 3, left).
The procedure is repeated for all parameters involved in the analysis and
for each archetype. Choosing the number of clusters for each parameter,
as seen in Fig. 3 (right side), gives control over the final number of sub-
archetypes. Higher number of clusters will exponentially increase the
number of sub-archetypes and hence number of simulations while
providing a more refined distribution of final outcomes.

BPA mass functions of different parameters with lower and higher
values within an archetype are then combined to generate the sub-
archetypes. Combined BPAs are derived by multiplication of BPAs of
individual parameters and then standardized because they are assumed
independent events following rules for joint probability. Similarly, BPA
of combination of sub-archetypes D, is calculated using multiplication of
individual BPA of sub-archetypes in each D,. Hence, each Dn will be
assigned a BPA named m(Dn) representing probability mass function of
Dn. This mass function is also assigned to the outcomes related to that Dn
previously shown as f(Dn).

Finally, DST measures named belief and plausibility functions are
used to propagate uncertainty. Bel(A) and PI(A) are calculated using
equations Eq. (5) and Eq. (6).

Bel(Dn) = Zm(Dn) 5)
DnCD
Bel(Dy,) can be interpreted as a measure for the amount of informa-
tion in D, that intersects with other events in total D. Bel(D,,)) shows how
much scenario D,, that explains total district D is supported by evidence
and available input data according to A; to A, as sub-archetypes.

Pl(Dn) =1 — Bel(Dn) (6)

PI(D,) represents the absence of information to support D, since Dn
represents discriminated sets of D,,. Each D, contains required input data
for energy simulations and retrofit analysis in addition to BPAs, belief,
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and plausibility functions. Belief and plausibility functions can be re-
ported in cumulative format, named cumulative belief function (CBF)
and cumulative plausibility functions (CPF), to provide a decisive
measure. CBF means all the evidence that support set D, and associated
energy demand and costs. Similarly, CPF means all the evidence that
support Dn and associated calculated outcomes. Uncertainty is under-
stood as the gap between these belief and plausibility of set D, (Fig. 4).
Algorithm 1 instructs a high-level stepwise flow required for calculation
of DST measures for the entire district.

To capture epistemic uncertainties, sub-archetypes were generated
by discretizing the parameter ranges of each original archetype. Spe-
cifically, for each of the seven key parameters (e.g., wall U-value, win-
dow U-value, floor area, etc.), two representative values were selected
— a lower bound and an upper bound — based on the distribution of
available data. This resulted in 27=128 possible combinations per
archetype, representing all permutations of lower and upper bounds
across the eight parameters. Each combination defines a unique sub-
archetype with a specific set of parameter values.

All possible combinations were generated without imposing hard
constraints, to fully explore the uncertainty space. However, sub-
archetypes with physically unlikely combinations naturally receive
lower BPAs based on their lower likelihood in the empirical data dis-
tributions. This process ensures that the DST framework properly re-
flects the confidence associated with each sub-archetype while avoiding
manual bias.

2.5. Optimal design: collective and individual building retrofit scenarios

To assess the optimal retrofitting strategies, we enforce energy effi-
ciency measures in two steps: collective retrofitting scenarios for the
entire district to achieve district level targets in addition to individual
building level minimum energy efficiency requirements. The optimal
renovation package can be found considering different objective func-
tions. CO, emissions, investment costs, and total cost of ownership are
among the most common KPIs to include in the objective function.
However, this study aims for a simplified objective function to allow for
a better interpretation of the outcomes. Moreover, aleatoric un-
certainties such as weather conditions, energy prices, and occupant
behaviors are not included in the analysis. Thus, we prioritize invest-
ment cost over other financial variables such as operational costs and
total cost of ownership to avoid facing uncertainties due to energy price
fluctuations, taxes, or subsidies, and to isolate the impact of epistemic
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Fig. 4. Uncertainty of set A as a function of Bel(A) and PI(A) (Deng & Wang, 2021).

Algorithm 1
Deriving sub-archetypes and assigned BPAs.

for all archetypes do
for all parameters do
Find lower and higher parameter limits Find BPA for parameters limits using KDE
end for
Combine parameters and form sub-archetypes
Combine BPAs of parameters and derive BPAs of sub-archetypes
end for
Combine sub-archetypes to form Dn
Calculate combined BPAs for Dn
Calculate Bel(D) and PI(D) for all possible Dn

uncertainty on retrofit strategies. The optimization problem is mathe-
matically formulated as below.

mrin 0= i If 7)
subject to:

i c; < obj. Xn: c; (8)
EPC; < 100 )

Vr € Rsetandi € [1 : m]

The objective function o in Eq. (7) is summation of the investment
costs (I) to be minimized on the district level for renovation packages r as
optimization parameter. r is a renovation package from the total reno-
vation options Rset for each building i from all m building archetypes.
One optimization constraint is shown in Eq. (8), representing summa-
tion of C] as carbon emissions from building i under renovation package
r. This serves the district level carbon reduction objective applied by the
scalar parameter obj defining the percentage to which the emissions are
required to decrease in comparison to summation of Cfas carbon emis-
sion from building i in current situation. Eq. (9) shows another
constraint which is EPC requirements for individual building level.

In the individual building level, we find renovation packages that
upgrade each building archetype to meet a minimum EPC of 100 kWh/
m?2. Such a minimum can be achieved by a variety of renovation pack-
ages. To this aim, we model and simulate all possible combinations for
renovation measures for each archetype and then filter the outcomes
that upgrade each individual building to an EPC lower than 100 kWh/
m?/year. In a second step, we enforce a CO, emission reduction target
for the entire district. Among all filtered renovation packages for each
archetype, the ones that minimize investment costs and minimize car-
bon emissions are chosen. The optimization algorithm is designed as
below.

At the first step, we find pareto front of renovation packages for each
archetype. By that, we decrease the number of options that must be
explored by the optimization algorithm. Pareto fronts for each building
renovation scenarios will decrease the number of options and help to
reach optimal solution in brute force method faster (Sharifi et al., 2022).
In the next step, we used an evolutionary algorithm to find the combi-
nation of renovation for all the archetypes in the district that can
minimize the investment cost and respect carbon reduction in the dis-
trict level. We developed a brute-force method combined with genetic

algorithms to provide educated guesses in each iteration. DEAP library
(Fortin et al., July 2012) from python programing language was used to
formulate the optimization problem and solve it efficiently. As evolu-
tionary algorithms do not guarantee finding the optimal solution, the
process of finding the solutions for the district was repeated, and optimal
solutions were compared to reach a convergence among solutions pro-
vided by the algorithm. Algorithm 2 summarizes the steps for the pro-
posed optimization algorithm in high level.

3. Case study: Sint-niklaas

Fig. 5 shows a map of part of Sint-Niklaas city used in the analysis as
case study with 1410 residential buildings, where each building is
classified into different clusters, denoted by a variety of color codes.
These clusters represent archetypes based on building characteristics
such as geometry and insulation properties. Note that the cluster colors
are only illustrative as we did not need to assign cluster labels to each
individual real building for this study. The dataset includes only resi-
dential buildings in the Sint-Niklaas district. Non-residential typologies
(e.g., commercial, office) are outside the scope of this study and repre-
sent an important avenue for future research.

Fig. 6 presents a pair-plot of various building parameters used for
archetype modeling in this study. We used window to wall ratio WWR,
wall, windows, floor, and roof u-values in addition to building condi-
tioned floor area and height. The data is divided into three building
types: detached buildings (green), semi-detached buildings (orange),
and terraced buildings (blue). WWR shows a relatively consistent dis-
tribution across building types, with most values ranging from 0.1 to 0.3.
Detached buildings exhibit a slightly wider distribution, indicating a
higher variability in window coverage. Wall U-value, which measures
the insulation effectiveness, shows most values clustering between 0.5 to
2.5 W/m?K. Detached buildings exhibit a broader range, including some
buildings with U-values as high as 3.0 W/m?K, indicating poor insu-
lation compared to terraced and semi-detached buildings. Window U-
value is concentrated between 2.0 and 4.0 W/m?K across all building
types, with terraced buildings showing slightly tighter clustering, indi-
cating more uniform window insulation. Floor and roof U-values both
show a wide range from 0.5 to 3.0 W/m?K, with no distinct patterns
separating the building types. However, some detached buildings
exhibit very high values for roof U-values, suggesting some buildings
may require significant roof insulation improvements. Building Floor
Area presents a distinct separation among building types. Detached
buildings show the largest variability, ranging from 100 to over 300 m?,
while semi-detached and terraced buildings generally fall below 200 m?.
Building Height is another distinguishing factor. Detached and semi-
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Algorithm 2
Optimization algorithm for optimal de-carbonization scenario.

Sustainable Cities and Society 130 (2025) 106520

1. Generate a wide range of retrofit plans for each sub-archetype

2. Input sub-archetypes and their retrofit plans into energy simulation engine (e.g., EBECS)

for all sub-archetypes do

a. Simulate current situation and all retrofit packages to derive EPC, costs, carbon emissions etc.

b. Filter packages achieving EPC < 100 kWh/m?/year for each sub- archetype
c. Find Pareto front of packages minimizing investment cost and car- bon emissions
end for
1. Set district-level Carbon reduction target e.g. 60 percent reductions
2. Formulate optimization problem:
a. Objective: Minimize district-level investment cost
b. Total Carbon emissions less than objectives
3. Use evolutionary algorithm (e.g., genetic algorithm with DEAP library)
4. Repeat 5 for convergence
Output optimal renovation package for each archetype and district-level summary
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Fig. 5. District of Sint-Niklaas, showing different buildings clustered (different colors) into archetypes used for efficient calculations in the UBEM analysis.

detached buildings range mostly between 6 and 10 m, whereas terraced
buildings cluster around 10 m representing less uncertainty in their
geometry.

4. Results

The following section begins by presenting a summary of the clus-
tering analysis and the BPA derivation exercise. This is followed by the
optimal renovation solutions, referred to as Pareto fronts, for individual
archetypes, and collective retrofit measures for the district under two
scenarios: 80 % and 60 % reductions in operational CO, emissions. Next,

the uncertainties across these scenarios are assessed using belief and
plausibility functions.

4.1. Clustering and building archetypes

The minimum number of clusters is chosen according to elbow
method (Fig. 7). As seen in the graph, the three building types are rep-
resented by distinct lines: blue for detached buildings, orange for semi-
detached buildings, and green for terraced buildings. For all building
types, the RMSSTD metric decreases as the number of clusters increases,
meaning that the clusters become more cohesive. However, the
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Fig. 6. Pair plot of building parameters (WWR, wall, windows, floor, and roof U-values in addition to building conditioned floor area and height) across detached,

semi-detached, and terraced buildings.

improvement in the metric slows down after a certain number of clus-
ters, indicating diminishing returns. The optimal number of clusters
appears to be around eight for different building typologies. The clus-
tering results are documented in the table in Appendix A.

Fig. 8 combines box plots with violin plots for various building pa-
rameters for one cluster. Red points represent the centroids of cluster
derived from the data. The inclusion of centroids in these visualizations
provides insight into the original archetypes. For instance, by analyzing
the centroids alongside the distributional properties, it is inferred how
much real building characteristics can differ from the values taken for
the archetypes as focal clusters. To provide intuitive illustration, these
variations are reported for d_6 corresponding to cluster number 6 from
detached houses.

Fig. 8 also shows the lower and higher limits for each parameter
ofd_6. d_6 represents an archetype and combination of these lower and

higher limits for parameter values in d_6 will create sub-archetypes for
archetype d_6. Similarly, each archetype will have multiple sub-
archetypes. A complete list of the sub-archetypes with for each single
parameter are documented in Appendix B. Afterwards, parameter values
and their individual BPAs are combined to provide BPAs for sub-
archetypes as documented in Appendix C.

4.2. Optimal solutions

Energy modeling and simulations were conducted for sub-archetypes
derived from the upper and lower parameter limits of the original ar-
chetypes, as explained above. Renovation packages include improve-
ment in all the physical parameters such as windows and walls, and roof
insulation. Heat pump is adopted in all the renovation scenarios if
heating system is upgraded as a mandatory renovation measure.
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Fig. 7. Comparison between number of clusters and RMSSTD for the elbow method to indicate the optimal number of clusters in three building types.
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archetypes and original archetypes are shown in red and blue respectively.

Installation of PV and its nominal capacity in addition to solar collectors
are among renovation packages. Permutation of individual renovation
measures in addition to the extent the renovation is applied will create
an extensive list of renovation measures. For example, windows can be
upgraded to double- and triple-glazing with different quality, accounted
with different thermal transmittance coefficient. An excerpt of the out-
comes of this intermediate step is shown in this section.

The scatter plot (Fig. 9) depicts the relationship between investment
costs and CO; emissions reduction for two distinct building focal clus-
ters, illustrating trade-offs in retrofitting strategies. Note that the sim-
ulations of the original archetypes are not part of the DST analysis and
are provided solely to clarify the methodology.

Archetype d_5 (in red) displays a trend of lower costs and lower
emissions, with investment costs ranging from 0 € (current situation
shown with black points) to 1000 €/m? and CO, emissions between
0 and 25 kg/m?. Highlighted points differentiate the scenarios by which
the EPC will decrease below 100 kWh/m?/year. Most points in this
archetype are concentrated below 1000 €/m? and 20 kg/m? COs, sug-
gesting cost-effective solutions for moderate emission reductions. In
contrast, archetype d_6 (in blue) spans a wider range of investment
costs, from 500€ to over 2000€/m?, with CO, emissions ranging from 10
to 50 kg/m? This archetype shows that higher investment levels,

10

particularly in the 1500-2000 €/m? range, tend to correspond with
significant CO, reductions, as low as 10-15 kg/m? However, some
moderate-cost retrofits in this archetype also achieve CO; emissions in
the range of 20-30 kg/m?, offering a balance between cost and emission
reduction. The analysis emphasizes the trade-offs involved in retrofitting
decisions: archetype d_6 allows for greater CO, reduction but requires
higher investments, while archetype d_5 presents more cost-efficient
options with smaller environmental benefits. These findings are
crucial for guiding decision-makers in optimizing renovation strategies
in the district by balancing financial feasibility and environmental
impact.

It was previously explained that each archetype has multiple sub-
archetypes standing for having a variety of buildings within one
archetype. Fig. 10 depicts the relation between carbon emissions and
investment costs for renovation packages for all sub-archetypes and
their renovation plan within the initial archetype for archetype d_6.
Depending on how the current situation of the building is assumed, the
renovation costs and predicted carbon emissions can differ. The Pareto
front highlights that there are packages that are sub optimal because
they cost more than others and save carbon emissions less than other
packages. Pareto front of renovation packages is derived for each sub-
archetype and used for further developing optimal decarbonization
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Fig. 10. Pareto front for different sub-archetypes of the original archetype d_6 from detached houses.

pathway for the district.

In Fig. 10, sub_arch_51, shown in dark green, exhibits the lowest
baseline emissions at approximately 55 kg/m?, indicating better initial
energy efficiency compared to other sub-archetypes, including the
original archetype, sub_arch_52. The comparison between different sub-
archetypes shows that differences in initial conditions gradually
diminish as investment costs increase. The Pareto fronts for each sub-
archetype are also depicted in Fig. 10, illustrating the trade-offs be-
tween investment costs and carbon emission reductions.

In the next step, optimal design for the renovation package for the
entire district was found considering individual and collective objec-
tives. In individual building level, all renovation scenarios that achieved
an energy performance of below 100 kWh/m?/year were first filtered to
respect the optimization constraint, representing a legal requirement for
building renovations. The collective objective is then respected by the
optimization algorithm when proposing renovation packages for each

11

building. Fig. 11 shows the outcomes of optimization step. Every point
represents a renovation package for the district, consisting of renovation
scenarios for individual building sub-archetypes in the district. Total
investment costs and total operational CO; emissions for each point are
reported in the point.

The optimization algorithm iterated 500 times for each objective.
This was devised because the algorithm is metaheuristic and cannot
guarantee finding the global optimal solution. The package with mini-
mum investment cost is chosen as the result of the optimal renovation
package for the district for the given objective to continue with the
uncertainty propagation.

4.3. Uncertainty analysis

Fig. 12 compares cumulative belief function (CBF) and cumulative
plausibility function (CPF) of summation of investment costs for
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building archetypes renovation under the two intended carbon reduc-
tion scenarios, being 80 % (Obj1) and 60 % (obj2) CO, operational re-
ductions in the district level. The absolute values of CBF and CPF
associated with the investment costs show the level certainty of the
costs. Moreover, distance between CBF and CPF reveal how much the
investment cost can be deviated for a given certainty level (between
0 and 1).

Fig. 12 demonstrates that achieving the 80 % CO, reduction requires
higher investments in high uncertainty areas (below 0.6) in comparison
to 60 % reduction. For high certainties region the cost difference of the
two scenarios is marginal, but there’s a risk of steep cost escalation for
Obj2 (60 %) above 0.9 CDF. Also, a wider plausibility-belief gap is
detected in this region. The graph also proves that the deterministic
prediction of costs for both scenarios are supported with plausibility and

belief functions. It is observed that the deterministic prediction of costs
is relatively close to high certainty calculations, especially in lower
objective.

Fig. 13 depicts the comparison between CBF and CPF for the two
optimal renovation scenarios in addition to the current situation in
terms of carbon emissions. The figure illustrates the dramatic differences
between deterministic and non- deterministic predictions of the current
situation carbon emissions. It also shows how carbon reduction can be
significantly different in the two scenarios. However, it is observed that
the uncertainties, plausibility-belief gaps, are overall higher than the
investment costs.

The graph shows that the deterministic prediction for objl aligns
with a very low CPF, indicating low plausibility for the deterministic
value. In contrast, although obj2 is associated with higher carbon

12
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emissions, its deterministic prediction is highly plausible. A significant
uncertainty in predicting carbon emissions for the current situation is
also observed. Overall, for the current situation the belief-plausibility
gap is substantial, particularly for the deterministic value. This differ-
ence between the current situation and future scenarios can be explained
by the fact that future scenarios like 80 % and 60 % scenarios are con-
strained by predefined renovation plans, leading to more limited set of
options with predictable carbon emissions. Moreover, the 80 % scenario
appears to offer a more robust solution for managing uncertainties in the
calculation of carbon emissions compared to the current situation. The
stark differences in carbon emissions in the 60 % and 80 % scenarios
suggest that future building energy policies must adopt a multi-tiered

approach to carbon reduction. The collective targets can help in
finding more robust solutions with similar costs. Uncertainty can be also
included in the optimization objective function to be minimized when
finding the optimal design of the district. The latter will result in a robust
optimization problem and requires non-trivial mathematical develop-
ment to solve the problem.

The belief and plausibility curves for the 80 % scenario exhibit a
narrower gap compared to the 60 % scenario, indicating reduced
epistemic uncertainty in both investment costs and carbon emissions.
This implies that the 80 % scenario is supported by a more consistent set
of sub-archetype outcomes, making it more robust despite higher costs
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4.4. Sensitivity of renovation measures to decarbonization scenarios

It was previously observed in Fig. 11 that the optimization algorithm
provides a variety of optimal solutions for building renovations at dis-
trict level. The optimization outcomes for the two scenarios, 80 % and
60 % reductions in carbon emissions, adhere to their specific constraint
boundaries, being 80 % and 60 % carbon emissions reductions for the
entire district, while offering different combinations of renovation
measures for individual buildings. In this section we further investigate
the optimal solutions to decode whether there is meaningful difference
between renovation measures proposed by the optimization algorithm
for the two scenarios. We first extract frequency of different renovation
measures in each scenario and then conduct statistical tests to check if
the difference is statistically significant.

Fig. 14 provides a side-by-side comparison of the frequencies of
different renovation measures that appeared in all optimal solutions
under two distinct scenarios: the 80 % scenario and the 60 % scenario.
The p-values annotated above each measure result from a Chi-squared
statistical test assessing whether the frequency difference between the
two scenarios is statistically significant.

The comparison of renovation measure frequencies between the 80
% and 60 % scenarios reveals clear patterns in technology adoption. Air-
water HP without floor heating and normal PV installation emerge as the
most frequently selected measures across both scenarios, with signifi-
cantly higher adoption in the 80 % scenario. Note that PV installation
measure in our simulations is a function of building electricity demand.
PV size is calculated according to the maximum demand of the building.
Normal PV accounts for covering building demand with 35 % self-
consumption as assumption, and “full-roof” measure offer larger PVs
and assumes exporting electricity to the grid (Appendix D).

Statistical testing confirms that for the major measures, such as heat
pump, PV installation, and higher insulations for windows and walls,
differences are statistically significant, with p-values below 0.05. This
indicates that stricter carbon reduction targets in our simulations lead to
a more homogenous uptake of impactful renovation technologies.

5. Discussion
5.1. Further exploration

In this study, a novel methodology was developed and demonstrated
for propagating epistemic uncertainties in estimated investment costs
and operational carbon emissions associated with collective building
renovation strategies at the district level. Compared to conventional
approaches, such as MCS, the proposed DST-based method requires
significantly fewer energy simulations to generate probability distribu-
tions for belief and plausibility functions. This computational efficiency
makes the methodology particularly suitable for UBEM applications at
city and district scales. An additional strength of the presented method
lies in its ability to incorporate expert opinions and incomplete data,
making it feasible to conduct uncertainty analyses even in contexts
where detailed and high-quality input data are unavailable. The meth-
odology does not particularly need input data distributions because
basic mass functions can be given by experts. Moreover, the approach
directly quantifies how data limitations translate into uncertainty in
projected outcomes.

While an explicit comparison between MCS and DST for the full case
study was not feasible due to computational prohibitions (the case study
requiring over 70 million simulations under MCS assumptions),
comparative studies for individual buildings reported in the literature
(ieter Tian et al., 2018; Xuanyuan, Yao, Knefaty & Laurice, May 2024)
confirm that MCS outcomes theoretically and practically fall between
the belief and plausibility bounds generated by DST, validating the
effectiveness of DST in uncertainty propagation. The trade-off lies in
reducing both computational effort and input requirements, with the
resulting outcomes expressed as bounds rather than single-point values.
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5.2. Limitations of the study

The case study results revealed that stricter decarbonization targets
(e.g., 80 % reduction scenarios) tended to produce more robust and less
uncertain outcomes with similar costs compared to less ambitious tar-
gets (e.g., 60 % reductions). Nevertheless, the underlying causes for the
observed variations in uncertainty levels between scenarios were not
explicitly identified. Future research should therefore include a detailed
sensitivity analysis to investigate whether uncertainty levels correlate
systematically with carbon reduction objectives, and to explore the in-
fluence of selected retrofit technologies on uncertainty propagation.

A further avenue for improvement lies in analyzing the trade-offs
between the number of archetypes and sub-archetypes and the result-
ing belief-plausibility gaps. While a higher number of sub-archetypes
can reduce uncertainty, it also increases computational effort. Identi-
fying an optimal balance between model granularity and computational
feasibility would enable more interactive and iterative energy planning
workflows, allowing planners to dynamically adjust models as better
data becomes available.

From an economic evaluation perspective, investment cost was
selected as the primary financial metric to minimize the influence of
aleatoric uncertainties such as fluctuating energy prices, taxes, and
subsidies. This choice ensured that the study focused purely on
epistemic uncertainty arising from building characteristics and retrofit
options. Nonetheless, it is acknowledged that this simplification limits
the realism of financial outcomes, which could be addressed in future
work by integrating Total Cost of Ownership (TCO) or operational cost
dynamics under a more sophisticated uncertainty framework.

5.3. Future work

The DST methodology also presents certain challenges. The inter-
pretation of belief and plausibility measures is not straightforward and
may require additional processing to be easily usable in decision-making
contexts. Measures such as Deng’s entropy (Deng & entropy, 2016; Deng
& Wang, 2021) offer a way to summarize uncertainty as a single KPI, but
these still lack direct interpretability in relation to physical building
attributes. Dedicated research on developing more intuitive KPIs linked
to DST outputs could further enhance the applicability of this method for
practical urban energy planning.

Several modelling simplifications were necessary to make the study
tractable, such as assuming uniform occupant behaviour, constant en-
ergy conversion factors, and fixed system efficiencies across the building
stock. Although these assumptions limit the absolute accuracy of in-
vestment and carbon emission estimates, the primary objective of the
study was to demonstrate a scalable method for uncertainty propaga-
tion, rather than to provide definitive quantitative or qualitative policy
recommendations.

Moreover, the DST-based methodology was applied exclusively to
residential buildings. It remains an open question how different building
typologies, such as commercial, industrial, or office buildings, will
impact the sensitivity of belief and plausibility distributions, especially
given their more complex and varied HVAC systems, occupancy pat-
terns, and operational schedules. Comparative studies across building
types could help to refine DST-based UBEM tools and better target un-
certainty mitigation strategies.

6. Conclusions

This study introduces a novel framework for incorporating epistemic
uncertainty quantification into Urban Building Energy Modeling
(UBEM) through the Dempster-Shafer Theory (DST). By applying this
methodology to a case study in Sint-Niklaas, Belgium, we demonstrated
the benefits of integrating uncertainty quantification into the planning
process for urban energy retrofits. The case study explores the complex
interplay between carbon emission reductions, investment costs, and the
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technical challenges of retrofitting residential buildings, offering critical
insights into the feasibility of achieving collective CO2 emissions
reduction targets in the district.

UBEM is increasingly using data-driven methods to simulate the
energy performance of building stocks. These methods must account for
GDPR rules, limited data availability, and computational constraints. To
improve efficiency, UBEM uses representative buildings, called arche-
types, that stand in for groups of similar buildings. Archetype modeling
can increase computational efficiency with a limited uncertainty of the
results. However, it can only provide a deterministic value without
indicating the probability of outcomes. While Monte Carlo Simulations
(MSCs) can be used to generate probability distributions, they are
computationally intensive and prohibitive at an urban scale. They also
do not explicitly report uncertainty as KPIs.

This study proposes a framework that integrates uncertainty quan-
tification using Dempster-Shafer Theory (DST). This framework explic-
itly reports uncertainties with lower computational demand. We derived
archetypes of similar buildings and then divided each of them to sub-
archetypes with associated probabilities, forming a probabilistic space.
A methodology was presented to derive probability of sub-archetypes of
buildings. A collection of renovation packages was applied to sub-
archetypes and energy simulations were run to derive carbon emis-
sions and costs before and after retrofits. Optimal renovation packages
that respected carbon emissions limitation, being 80 % and 60 % carbon
emissions reduction, at district levels were found with an optimization
algorithm. Finally, the belief-plausibility gap was reported as an un-
certainty measure according to DST.

The comparison of 60 % and 80 % CO3 reduction scenarios highlights
the importance of uncertainty in decision-making. While the 80 % sce-
nario demonstrates better environmental outcomes, it requires greater
upfront investment, especially in high uncertainty areas. On the other
hand, the 60 % scenario presents a more financially feasible option with
lower initial costs but resulted in higher uncertainties. It was observed
that investment costs are prone to more uncertainties in comparison to
carbon emissions. This was related to the fact that multiple renovation
plans with different investment costs can achieve similar carbon emis-
sions reduction. The clear trade-off between uncertainty and costs of a
scenario enables decision-makers to evaluate and mitigate associated
risks.

Further research should explore a concise indicator for reporting
uncertainty as a KPI. Moreover, conducting a sensitivity analysis on
intermediate parameters, such as the number of archetypes and sub-
archetypes, can enhance the tool’s practicality and effectiveness.
Finally, future studies should consider integrating dynamic factors such
as fluctuating energy prices and occupant behavior to account for both
epistemic and aleatoric uncertainties.
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